【題目】如圖,在四棱錐中, 是正三角形, 是等腰三角形,

(1)求證: ;

(2)若 ,平面平面,直線與平面所成的角為45°,求二面角的余弦值.

【答案】(1)見解析;(2).

【解析】試題分析:1)取BD中點O,連結(jié)CO,EO,推導出CO⊥BD,EO⊥BD,由此能證明BE=DE.

2)以O為原點,OAx軸,OBy軸,OEz軸,建立空間直角坐標系,利用向量法能求出二面角B﹣AE﹣D的余弦值.

試題解析:

證明:(1)取BD中點O,連結(jié)CO,EO,

∵△BCD是等腰三角形,∠BCD=120°,∴CB=CD∴CO⊥BD,

∵EC⊥BD,EC∩CO=C∴BD⊥平面EOC,∴EO⊥BD

△BDE中,∵OBD的中點,∴BE=DE

2平面EBD⊥平面ABCD,平面EBD∩平面ABCD=BD,

EO⊥BD,∴EO⊥平面ABCD,

∵CO⊥BDAO⊥BD,

∴AO,C三點共線,AC⊥BD,

O為原點,OAx軸,OBy軸,OEz軸,建立空間直角坐標系,

在正△ABD中,AB=2∴AO=3,BO=DO=,

直線AE與平面ABD所成角為45°∴EO=AO=3,

A30,0),B0,,0),D0,,0),E003),

=﹣3,0),=﹣3,,0),=﹣30,3),

設平面ABE的法向量=a,b,c),

,取a=1,得=1,,1),

設平面ADE的法向量=x,y,z),

,取x=1,得=1,1),

設二面角B﹣AE﹣Dθ,

cosθ===

二面角B﹣AE﹣D的余弦值為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中, 平面 .過的平面交于點,交于點.

(l)求證: 平面;

(Ⅱ)求證: ;

(Ⅲ)記四棱錐的體積為,三棱柱的體積為.若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù),其中為自然對數(shù)的底數(shù).

(1)若曲線軸上的截距為,且在點處的切線垂直于直線,求實數(shù)的值;

(2)記的導函數(shù)為 在區(qū)間上的最小值為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面是平行四邊形, , 平面底面,且是邊長為的等邊三角形, , 點.

(1)求證:平面平面;

(2)證明: , 且的面積相等.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨機抽取100名學生,測得他們的身高(單位: ),按照區(qū)間,

分組,得到樣本身高的頻率分布直方圖(如圖).

(1)求頻率分布直方圖中的值及身高在以上的學生人數(shù);

(2)將身高在區(qū)間內(nèi)的學生依次記為三個組,用分層抽樣的方法從這三個組中抽取6人,求從這三個組分別抽取的學生人數(shù);

(3)在(2)的條件下,要從6名學生中抽取2人.用列舉法計算組中至少有1人被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù)

(1)解不等式;

(2)若關(guān)于的方程的解集為空集,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,的值域是____;若的值域是,則實數(shù)的取值范圍是____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列 , 滿足,且當時, ,令

)寫出的所有可能的值.

)求的最大值.

)是否存在數(shù)列,使得?若存在,求出數(shù)列;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班為了活躍元旦晚會氣氛,主持人請12位同學做一個游戲,第一輪游戲中,主持人將標有數(shù)字1到12的十二張相同的卡片放入一個不透明的盒子中,每人依次從中取出一張卡片,取到標有數(shù)字7到12的卡片的同學留下,其余的淘汰;第二輪將標有數(shù)字1到6的六張相同的卡片放入一個不透明的盒子中,每人依次從中取出一張卡片,取到標有數(shù)字4到6的卡片的同學留下,其余的淘汰;第三輪將標有數(shù)字1,2,3的三張相同的卡片放入一個不透明的盒子中,每人依次從中取出一張卡片,取到標有數(shù)字2,3的卡片的同學留下,其余的淘汰;第四輪用同樣的辦法淘汰一位同學,最后留下的這位同學獲得一個獎品.已知同學甲參加了該游戲.

(1)求甲獲得獎品的概率;

(2)設為甲參加游戲的輪數(shù),求的分布列與數(shù)學期望.

查看答案和解析>>

同步練習冊答案