12.90°=$\frac{π}{2}$弧度.

分析 直接利用角度與弧度轉(zhuǎn)化求解即可.

解答 解:因為180°=π弧度,
所以90°=$\frac{π}{2}$弧度.
故答案為:$\frac{π}{2}$.

點評 本題考查角度與弧度的轉(zhuǎn)化,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知等差數(shù)列{an}的前n項和為Sn,并且S10>0,S11<0,關(guān)于數(shù)列{an}有下列命題:
(1)公差d<0,首項a1>0;
(2)S6最大;
(3)a3>0;
(4)a6>0
上述命題正確的是(1),(3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.首位數(shù)字是1,且恰有兩個數(shù)字相同的四位數(shù)共有( 。
A.216個B.252個C.324個D.432個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若(2a-1)${\;}^{\frac{1}{3}}$>(2a-1)${\;}^{\frac{1}{2}}$,則實數(shù)a的取值范圍是($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為60°,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=3,則|5$\overrightarrow{a}$-$\overrightarrow$|=$\sqrt{19}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知△ABC中,a,b,c分別為角A,B,C的對邊,若△ABC的面積S=$\frac{{a}^{2}+^{2}-{c}^{2}}{4\sqrt{3}}$,則角C=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}、{bn}、{cn}滿足(an+1-an)(bn+1-bn)=cn(n∈N*).
(1)設(shè)cn=2n+n,an=n+1,當(dāng)b1=1時,求數(shù)列{bn}的通項公式;
(2)設(shè)cn=n3,an=n2-8n,求正整數(shù)k,使得一切n∈N*,均有bn≥bk

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點為F(3,0),過點F且斜率為$\frac{1}{2}$的直線交橢圓于A,B兩點.若AB的中點坐標(biāo)為(1,-1),則E的方程為( 。
A.$\frac{x^2}{45}+\frac{y^2}{36}=1$B.$\frac{x^2}{36}+\frac{y^2}{27}=1$C.$\frac{x^2}{27}+\frac{y^2}{18}=1$D.$\frac{x^2}{18}+\frac{y^2}{9}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(-2)=0,當(dāng)x>0時,xf′(x)-f(x)>0,則使得f(x)>0成立的x的取值范圍是(-2,0)∪(2,+∞).

查看答案和解析>>

同步練習(xí)冊答案