16.(1)已知f(x-2)=3x-5,求f(x);
(2)已知二次函數(shù)f(x)的圖象過點(0,4),對任意x滿足f(3-x)=f(x),且有最小值$\frac{7}{4}$,求f(x)的解析式.

分析 (1)利用換元法求解函數(shù)解析式;
(2)對任意x滿足f(3-x)=f(x),說明函數(shù)關(guān)于x=$\frac{3}{2}$對稱,然后直接設(shè)出一元二次函數(shù)的表達(dá)式即可.

解答 解:解:(1)令t=x-2,則x=t+2,t∈R,由已知有
f(t)=3(t+2)-5=3t+1,
故 f(x)=3x+1.
(2)由題知二次函數(shù)圖象的對稱軸為x=$\frac{3}{2}$,又最小值是$\frac{7}{4}$,
則可設(shè)f(x)=a(x-$\frac{3}{2}$)2+$\frac{7}{4}$(a≠0),
又圖象過點(0,4),則a(0-$\frac{3}{2}$)2+$\frac{7}{4}$=4,解得a=1.
∴f(x)=$(x-\frac{3}{2})^{2}$+$\frac{7}{4}$=x2-3x+4.
所以,f(x)的解析式為:f(x)=x2-3x+4.

點評 本題考查了函數(shù)解析式、一元二次函數(shù)的基本性質(zhì)與圖形特征,屬?碱}型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點O為坐標(biāo)原點,點A,B,C不共線,且$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$),λ∈R,則點P的軌跡是∠BAC的角平分線所在直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lg(ax2+2x+1),若f(x)的定義域是R,求實數(shù)a的取值范圍及f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.給出下列四個命題:
①平行于同一平面的兩條直線平行;
②垂直于同一平面的兩條直線平行;
③如果一條直線和一個平面平行,那么它和這個平面內(nèi)的任何直線都平行;
④如果一條直線和一個平面垂直,那么它和這個平面內(nèi)的任何直線都垂直.
其中正確命題的序號是( 。
A.①②B.①③C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知奇函數(shù)f(x)的定義域為R,直線x=1是曲線y=f(x)的對稱軸,且f(3)=1,則f(7)+f(8)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.平面α∩平面β=l,點A∈α,點B∈β,且B∉l,點C∈α,又AC∩l=R,過A、B、C 三點確定的平面為γ,則β∩γ是( 。
A.直線CRB.直線BRC.直線ABD.直線BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=2lnx-x2+ax(a∈R).
(Ⅰ)當(dāng)a=0時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)g(x)=f(x)-ax+m在$[\frac{1}{e},\;\;e]$上有兩個零點,求實數(shù)m的取值范圍;
(Ⅲ)若函數(shù)f(x)的圖象與x軸有兩個不同的交點A(x1,0),B(x2,0),且0<x1<x2,求證:$f'(\frac{{{x_1}+{x_2}}}{2})<0$(其中f′(x)是f(x)的導(dǎo)函數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知向量$\overrightarrow{a}$=(-2,3),$\overrightarrow$=(3,-1),若($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{c}$,則向量$\overrightarrow{c}$可以是(  )
A.(-3,6)B.(4,2)C.(2,4)D.(-4,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,已知正方體ABCD-A1B1C1D1棱長為4,點H在棱AA1上,且HA1=1.在側(cè)面BCC1B1內(nèi)作邊長為1的正方形EFGC1,P是側(cè)面BCC1B1內(nèi)一動點,且點P到平面CDD1C1距離等于線段PF的長.則當(dāng)點P運動時,
(1)P的軌跡方程是2x-1=(z-3)2,
(2)|HP|2的最小值是22.

查看答案和解析>>

同步練習(xí)冊答案