【題目】給出下列說法:

①數(shù)列,,…的一個(gè)通項(xiàng)公式是

②當(dāng)時(shí),不等式對(duì)一切實(shí)數(shù)x都成立;

③函數(shù)是周期為的奇函數(shù);

④兩兩相交且不過同一點(diǎn)的三條直線必在同一個(gè)平面內(nèi).

其中,正確說法序號(hào)是_________.

【答案】①②③④

【解析】

根據(jù)已知,歸納猜想數(shù)列的通項(xiàng)公式,可判斷①;根據(jù)二次函數(shù)的圖象和性質(zhì),結(jié)合已知,可判斷②;利用誘導(dǎo)公式和二倍角公式,化簡(jiǎn)函數(shù)解析式,結(jié)合三角函數(shù)的圖象和性質(zhì),可判斷③;根據(jù)公理2及其推論,可判斷④.

數(shù)列

其被開方數(shù)構(gòu)成一個(gè)以為首項(xiàng),為公差的等差數(shù)列,

故它的一個(gè)通項(xiàng)公式是,故①正確;

當(dāng)時(shí),

則函數(shù)的圖象開口朝下,且與軸無(wú)交點(diǎn),

故不等式對(duì)一切實(shí)數(shù)都成立,故②正確;

該函數(shù)是周期為的奇函數(shù),故③正確;

設(shè)三條直線,,

由公理3推論2可知,直線可確定一個(gè)平面,

,

由公理1可知,

三條直線均在平面內(nèi),故④正確.

故答案為:①②③④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說法正確的是()

A. ,,則”是真命題

B. 在同一坐標(biāo)系中,函數(shù)的圖象關(guān)于軸對(duì)稱.

C. 命題“,使得”的否定是“,都有

D. ,“”是“”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), 為自然對(duì)數(shù)的底數(shù).

(1)若當(dāng)時(shí), 恒成立,求的取值范圍;

(2)設(shè),若對(duì)恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

1)若曲線處的切線與直線垂直,求實(shí)數(shù)的值;

2)設(shè),若對(duì)任意兩個(gè)不等的正數(shù),都有恒成立,求實(shí)數(shù)的取值范圍;

3)若上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱, 平面 ,點(diǎn)中點(diǎn).

1)求證: ;

2)若, , ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,假命題是( )

A. B. ,

C. 的充要條件是 D. ,的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中, 平面,,為鄰邊作平行四邊形,連接.

(1)求證:平面

(2)若二面角.

求證:平面平面;

求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某校隨機(jī)抽取200名學(xué)生,獲得了他們一周課外閱讀時(shí)間(單位:h)的數(shù)據(jù),整理得到數(shù)據(jù)的頻數(shù)分布表和頻率分布直方圖(如圖).

 號(hào)

 

 數(shù)

1

[0,2)

12

2

[2,4)

16

3

[4,6)

34

4

[6,8)

44

續(xù) 

 號(hào)

 

 數(shù)

5

[8,10)

50

6

[10,12)

24

7

[12,14)

12

8

[14,16)

4

9

[16,18]

4

合計(jì)

200

(1)從該校隨機(jī)選取一名學(xué)生,試估計(jì)這名學(xué)生該周課外閱讀時(shí)間少于12 h的概率;

(2)求頻率分布直方圖中的a,b的值;

(3)假設(shè)同一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,試估計(jì)樣本中的200名學(xué)生該周課外閱讀時(shí)間的平均數(shù)在第幾組.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在海岸處,發(fā)現(xiàn)北偏東方向,距離海里的處有一艘走私船,在處北偏西方向,距離海里的處有一艘緝私艇奉命以海里/時(shí)的速度追截走私船,此時(shí),走私船正以海里/時(shí)的速度從處向北偏東方向逃竄.

(1)問船與船相距多少海里?船在船的什么方向?

(2)問緝私艇沿什么方向行駛才能最快追上走私船?并求出所需時(shí)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案