【題目】已知函數(shù), 為自然對數(shù)的底數(shù).
(1)若當時, 恒成立,求的取值范圍;
(2)設,若對恒成立,求的最大值.
【答案】(1) (2) 的最大值為,此時,
【解析】試題分析:(1)因為,所以恒成立,由于,所以設,則恒成立,根據一次函數(shù)單調性即得的取值范圍;(2)令,則原問題轉化為對恒成立.根據二次求導可得, ,即得,再利用導數(shù)求函數(shù)最大值,即得的最大值.
試題解析:(1)由題意得,且,注意到
設,則,則為增函數(shù),且.
討論如下:
①若, ,得在上單調遞增,有,得在上單調遞增,有,合題意;
②若,令,得,則當時, ,得在上單調遞減,有,得在上單調遞減,有,舍去.
綜上, 的取值范圍.
(2)當時, ,即.
令,則原問題轉化為對恒成立.
令, .
若,則,得單調遞增,當時, , 不可能恒成立,舍去;
若,則;
若,則易知在處取得最小值,所以, ,將看做新的自變量,即求函數(shù)的最大值,
則,令,得.
所以在上遞增,在上遞減,所以,
即的最大值為,此時, .
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}中,公差d>0,其前n項和為Sn,且滿足:a2a3=45,a1+a4=14.
(1)求數(shù)列{an}的通項公式;
(2)通過公式bn=構造一個新的數(shù)列{bn}.若{bn}也是等差數(shù)列,求非零常數(shù)c;
(3)對于(2)中得到的數(shù)列{bn},求f(n)= (n∈N*)的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱中,底面是邊長為的等邊三角形, 為的中點,側棱,點在上,點在上,且, .
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點O(0,0),A(1,2),B(4,5)及=+t,
求:(1)t為何值時,點P在x軸上?在y軸上?在第二象限?
(2)四邊形OABP能否成為平行四邊形?若能,求出相應的t值?若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知命題:關于的不等式無解;命題:指數(shù)函數(shù)是增函數(shù).
(1)若命題為真命題,求的取值范圍;
(2)若滿足為假命題為真命題的實數(shù)取值范圍是集合,集合,且,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列說法:
①數(shù)列,,,,…的一個通項公式是;
②當時,不等式對一切實數(shù)x都成立;
③函數(shù)是周期為的奇函數(shù);
④兩兩相交且不過同一點的三條直線必在同一個平面內.
其中,正確說法序號是_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知|x|≤2,|y|≤2,點P的坐標為(x,y).
(1)求當x,y∈R時,P滿足(x-2)2+(y-2)2≤4的概率.
(2)求當x,y∈Z時,P滿足(x-2)2+(y-2)2≤4的概率.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com