5.函數(shù)y=$\frac{{x•{{log}_3}|x|}}{|x|}$的圖象可能是( 。
A.B.C.D.

分析 根據(jù)函數(shù)的表達(dá)式得出函數(shù)的奇偶性,根據(jù)奇函數(shù)圖象關(guān)于原點對稱,再利用特殊值法排除D選項即可.

解答 解:定義域為(-∞,0)∪(0,+∞),
且函數(shù)為奇函數(shù),
∴圖象關(guān)于原點對稱,排除A,C,
當(dāng)x為無窮大時,顯然函數(shù)值為正,故排除D,
故選:B.

點評 本題考查了函數(shù)圖象的判斷在選擇題中的解題方法.注意排除法的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若定義在區(qū)間[-2016,2016]上的函數(shù)f(x)滿足:對于任意的x1,x2∈[-2016,2016],都有f(x1+x2)=f(x1)+f(x2)-2016,且x>0時,有f(x)<2016,f(x)的最大值、最小值分別為M,N,則M+N的值為( 。
A.2015B.2016C.4030D.4032

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an}的前n項和Sn滿足:2Sn=3an-6n(n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)$b{\;}_n=\frac{a_n}{λ^n}$,其中常數(shù)λ>0,若數(shù)列{bn}為遞增數(shù)列,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知成等比數(shù)列的三個數(shù)的乘積為64,且這三個數(shù)分別減去1、2、5后又成等差數(shù)列,求這三個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=x3-3x2+2的極大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)函數(shù)f(x)=2|x+a|-|x+b|
(Ⅰ)當(dāng)a=0,b=-$\frac{1}{2}$時,求使f(x)≥$\sqrt{2}$的x取值范圍;
(Ⅱ)若f(x)≥$\frac{1}{16}$恒成立,求a-b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知數(shù)列{an}中,a1=a(0<a≤1),an+1=$\left\{\begin{array}{l}{{a}_{n}-1,({a}_{n}>1})\\{-{a}_{n}+\frac{3}{2},({a}_{n}≤1})\end{array}\right.$(n∈N*
①若a3=$\frac{1}{6}$,則a=$\frac{1}{3}$;
②記Sn=a1+a2+…+an,則S2016=1512.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知ABCD是邊長為2的正方形,EA⊥平面ABCD,F(xiàn)C∥EA,設(shè)EA=1,F(xiàn)C=2.
(1)證明:EF⊥BD;
(2)求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)z=$\frac{2+i}{i}$的虛部是( 。
A.2B.2iC.-2D.-2i

查看答案和解析>>

同步練習(xí)冊答案