13.已知成等比數(shù)列的三個(gè)數(shù)的乘積為64,且這三個(gè)數(shù)分別減去1、2、5后又成等差數(shù)列,求這三個(gè)數(shù).

分析 設(shè)此三個(gè)數(shù)分別為:$\frac{a}{q}$,a,aq.由題意可得:$\frac{a}{q}$×a×aq=64,2(a-2)=$\frac{a}{q}$-1+aq-5.解出即可得出.

解答 解:設(shè)此三個(gè)數(shù)分別為:$\frac{a}{q}$,a,aq.
由題意可得:$\frac{a}{q}$×a×aq=64,
2(a-2)=$\frac{a}{q}$-1+aq-5.
聯(lián)立解得a=4,q=2或$\frac{1}{2}$.
∴這三個(gè)數(shù)分別為:2,4,8或8,4,2.

點(diǎn)評(píng) 本題考查了等比數(shù)列與等差數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.命題“?x∈(-1,1),2x+a=0”是真命題,則a的取值范圍是(-2,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸長(zhǎng)為2$\sqrt{2}$,且斜率為$\sqrt{3}$的直線l過(guò)橢圓C的焦點(diǎn)及點(diǎn)(0,-2$\sqrt{3}$).
(1)求橢圓C的方程;
(2)已知一直線m過(guò)橢圓C的左焦點(diǎn)F,交橢圓于點(diǎn)P、Q,若直線m與兩坐標(biāo)軸都不垂直,點(diǎn)M在x軸上,且使MF為∠PMQ的一條角平分線,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.袋中裝有5只大小相同的球,編號(hào)分別為1,2,3,4,5,現(xiàn)從該袋中隨機(jī)地取出3只,被取出的球
中最大的號(hào)碼為ξ,則Eξ=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,四棱錐P-ABCD中,△ABC與△PAB均為等邊三角形,AC=$\sqrt{2}$AD=$\sqrt{2}$CD,PC=$\frac{3}{2}$AB.
(1)若三棱錐P-ABC的體積為$\frac{\sqrt{3}}{2}$,求四邊形ABCD的面積.
(2)N為DP上一點(diǎn),且$\overrightarrow{NP}$=$\sqrt{3}$$\overrightarrow{DN}$,在線段AB上是否存在一點(diǎn)M,使MN∥平面PBC,若存在.求出$\frac{AM}{AB}$,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,點(diǎn)A,B分別為橢圓的右頂點(diǎn)和上頂點(diǎn),且|AB|=$\sqrt{7}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)橢圓C的右焦點(diǎn)為F,過(guò)F點(diǎn)的兩條互相垂直的直線l1、l2,直線l1與橢圓C交于P,Q兩點(diǎn),直線l2與直線x=4交于T點(diǎn),求證:線段PQ的中點(diǎn)在直線OT上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)y=$\frac{{x•{{log}_3}|x|}}{|x|}$的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在四棱柱ABCD-A1B1C1D1中,AB∥CD,AB⊥AD,AB=4,AD=2$\sqrt{2}$,CD=2,AA1=2,側(cè)棱AA1⊥底面ABCD,E是A1D上一點(diǎn),且A1E=2ED.
(1)求證:EO∥平面A1ABB1;
(2)求直線A1B與平面A1ACC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x+y-a≤0}\\{x-y≥0}\\{y≥0}\\{\;}\end{array}\right.$,若z=x-2y的最小值為-1,則實(shí)數(shù)a的值為( 。
A.2B.1C.0D.-1

查看答案和解析>>

同步練習(xí)冊(cè)答案