15.在△ABC中,角A,B,C所對的邊分別為a,b,c,且$\frac{2b-\sqrt{3}c}{\sqrt{3}a}$=$\frac{cosC}{cosA}$.
(1)求A的值;
(2)若B=$\frac{π}{6}$,BC邊上的中線AM=2$\sqrt{21}$,求△ABC的面積.

分析 (1)利用正弦定理,結(jié)合和角的正弦公式,三角形內(nèi)角和定理,即可得出結(jié)論.
(2)利用余弦定理,三角形面積公式即可得解.

解答 解:(1)因為(2b-$\sqrt{3}$c)cosA=$\sqrt{3}$acosC,由正弦定理得:
(2sinB-$\sqrt{3}$sinC)cosA=$\sqrt{3}$sinAcosC,
即2sinBcosA=$\sqrt{3}$(sinAcosC+cosAsinC)=$\sqrt{3}$sin(A+C),
因為B=π-A-C,所以sinB=sin(A+C),所以2sinBcosA=$\sqrt{3}$sinB,
因為0<B<π,所以sinB>0,所以cosA=$\frac{\sqrt{3}}{2}$,
因為0<A<π,所以A=$\frac{π}{6}$.
(2)由(1)知A=B=$\frac{π}{6}$,所以AC=BC,C=$\frac{2π}{3}$,設CM=x,則AC=2x,
在△ACM中,由余弦定理可得x=2$\sqrt{3}$,
所以S△ABC=$\frac{1}{2}•2x•2x•sin\frac{2π}{3}$=12$\sqrt{3}$.

點評 本題考查正弦定理,和角的正弦公式,余弦定理,三角形面積公式的應用,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

5.直線2x+3y-6=0交x、y軸于A、B兩點,試在直線y=-x上求一點P,使|PA|+|PB|最小,則P點的坐標是(0,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知A={x|y=$\sqrt{x-a}$},B={y|y=log${\;}_{\frac{1}{2}}$x,0<x≤$\frac{1}{4}$},且A=B,則a=( 。
A.1B.2C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知z=($\sqrt{3}$-2sinx)+(2cosx+1)i(0<x<π)是純虛數(shù),則x等于( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.歐拉公式eix=cosx+isinx(i為虛數(shù)單位)是由瑞士著名數(shù)學家歐拉發(fā)明的,它將指數(shù)函數(shù)的定義域擴大到復數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關系,它在復變函數(shù)論里占用非常重要的地位,被譽為“數(shù)學中的天橋”,根據(jù)歐拉公式可知,e2i表示的復數(shù)在復平面中位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知數(shù)列{an}中,a1=2,a2n=an+1,a2n+1=n-an,則{an}的前100項和為( 。
A.1250B.1276C.1289D.1300

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知Sn為數(shù)列{an}的前n項和,Sn=nan-3n(n-1)(n∈N*),且a2=11.
(1)證明:數(shù)列{an}是等差數(shù)列,并求其前n項和Sn;
(2)設數(shù)列{bn}滿足bn=$\frac{{a}_{n}+11}{{2}^{n}}$,求數(shù)列{bn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知二次函數(shù)f(x)=ax2+bx+c(a≠0)滿足條件:f(0)=1,f(x+1)-f(x)=2x.
(1)求f(x);      
(2)求f(x)在區(qū)間[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知點F的坐標為(0,$\frac{3}{2}$),動圓P經(jīng)過點F且和直線y=-$\frac{3}{2}$相切.
(1)求動圓P的圓心軌跡W的方程;
(2)過點F的直線1,交軌跡W于A、B兩點,若|AB|=12,求直線l的方程.

查看答案和解析>>

同步練習冊答案