分析 (1)設(shè)f(x)=ax2+bx+c,則f(x+1)-f(x)=a(x+1)2+b(x+1)+c-(ax2+bx+c)=2ax+a+b,根據(jù)對(duì)應(yīng)項(xiàng)的系數(shù)相等可分別求a,b,c.
(2)對(duì)函數(shù)進(jìn)行配方,結(jié)合二次函數(shù)在[-1,1]上的單調(diào)性可分別求解函數(shù)的最值.
解答 解:(1)由f(x)=ax2+bx+c,
則f(x+1)-f(x)=a(x+1)2+b(x+1)+c-(ax2+bx+c)=2ax+a+b
∴由題意得 $\left\{\begin{array}{l}{c=1}\\{2ax+a+b=2x}\end{array}\right.$恒成立,
∴$\left\{\begin{array}{l}{2a=2}\\{a+b=0}\\{c=1}\end{array}\right.$,得 $\left\{\begin{array}{l}{a=1}\\{b=-1}\\{c=1}\end{array}\right.$,
∴f(x)=x2-x+1;
(2)f(x)=x2-x+1=(x-$\frac{1}{2}$)2+$\frac{3}{4}$在[-1,$\frac{1}{2}$]單調(diào)遞減,在[$\frac{1}{2}$,1]單調(diào)遞增
∴f(x)min=f($\frac{1}{2}$)=$\frac{3}{4}$,f(x)max=f(-1)=3.
點(diǎn)評(píng) 本題主要考查了利用待定系數(shù)法求解二次函數(shù)的解析式,及二次函數(shù)在閉區(qū)間上的最值的求解,要注意函數(shù)在所給區(qū)間上的單調(diào)性,一定不能直接把區(qū)間的端點(diǎn)值代入當(dāng)作函數(shù)的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{2}{9}$,2) | B. | ($\frac{2}{9}$,$\frac{4}{9}$) | C. | (0,$\frac{2}{9}$)∪($\frac{4}{9}$,+∞) | D. | (0,$\frac{2}{9}$)∪(2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a≤0 | B. | a<-$\frac{3}{2}$或a=0 | C. | a<-$\frac{3}{2}$ | D. | a<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com