13.已知向量$\overrightarrow{a}$與$\overrightarrow$夾角為$\frac{π}{3}$,且$\overrightarrow{a}$=(-2,-6),|$\overrightarrow$|=$\sqrt{10}$,則$\overrightarrow{a}$•$\overrightarrow$=10.

分析 根據(jù)向量的數(shù)量積公式計(jì)算即可.

解答 解:∵$\overrightarrow{a}$=(-2,-6),
∴|$\overrightarrow{a}$|=$\sqrt{(-2)^{2}+(-6)^{2}}$=2$\sqrt{10}$,
∵向量$\overrightarrow{a}$與$\overrightarrow$夾角為$\frac{π}{3}$,|$\overrightarrow$|=$\sqrt{10}$,
∴$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|•cos$\frac{π}{3}$=2$\sqrt{10}$×$\sqrt{10}$×$\frac{1}{2}$=10,
故答案為:10

點(diǎn)評(píng) 本題考查了向量的數(shù)量積公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知$\overrightarrow a$=(2,3),$\overrightarrow b$=(-2,4),求:
(Ⅰ)$\overrightarrow a$+2$\overrightarrow b$和$\overrightarrow a$-$\overrightarrow b$的坐標(biāo);
(Ⅱ)(${\overrightarrow a$+2$\overrightarrow b}$)•(${\overrightarrow a$-$\overrightarrow b}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)函數(shù)f(x)=|x-2|-|x+1|-1,g=-x+a.
(1)求不等式f(x)≥0的解集;
(2)若方程f(x)=g(x)有三個(gè)不同的解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=ax2-4ln(x-1),a∈R
(1)若$a=\frac{1}{2}$,求曲線f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)已知點(diǎn)P(1,1)和函數(shù)f(x)圖象上的動(dòng)點(diǎn)M(mf(m)),對(duì)任意m∈[2,e+1],直線PM傾斜角都是鈍角,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若不等式(-1)n•a<n+$\frac{9•(-1)^{n+1}}{n+1}$對(duì)任意n∈N*恒成立,則實(shí)數(shù)a的取值范圍是($-\frac{21}{4},-1$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$f(x)=sin(\frac{πx}{2}+\frac{π}{6})+1$,求在$x∈[{-\frac{2}{3},\frac{5}{3}}]$上的值域[$\frac{1}{2}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)關(guān)于x的方程2x2-ax-2=0(a∈R))的兩個(gè)實(shí)根為α、β(α<β),函數(shù)$f(x)=\frac{4x-a}{{{x^2}+1}}$.
(Ⅰ)求f(α),f(β)的值(結(jié)果用含有a的最簡(jiǎn)形式表示);
(Ⅱ)函數(shù)f(x)在R上是否有極值,若有,求出極值;沒有,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若在區(qū)間[0,4]上任取一個(gè)數(shù)m,則函數(shù)f(x)=$\frac{1}{3}$x3-x2+mx在R上是單調(diào)增函數(shù)的概率是$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$,AB=1,M是PB的中點(diǎn).
(1)求證:MC∥平面PAD;
(2)求PC與平面MAC所形成的角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案