分析 (I)取PA中點(diǎn)G,連結(jié)DG,F(xiàn)G.則FG$\stackrel{∥}{=}$DF,故四邊形EFDG是平行四邊形,于是DG∥EF,將問(wèn)題轉(zhuǎn)化為證明DG⊥平面PAB即可;
(II)由AB⊥平面PAB得AB⊥AD,AB⊥PH,故而PH⊥平面ABCD,AD⊥CD,于是E到底面ABCD的距離為$\frac{1}{2}PH$,代入棱錐的體積公式計(jì)算即可.
解答 證明:(I)取PA中點(diǎn)G,連結(jié)DG,F(xiàn)G.
∵E,G是PB,PA的中點(diǎn),
∴FG$\stackrel{∥}{=}$$\frac{1}{2}AB$,
又∵DF$\stackrel{∥}{=}\frac{1}{2}AB$,
∴FG$\stackrel{∥}{=}$DF,
∴四邊形EFDG是平行四邊形,
∴DG∥EF.
∵AB⊥平面PAD,DG?平面PAD,
∴AB⊥DG,
∵AD=PD,G是PA的中點(diǎn),
∴DG⊥PA,
又PA?平面PAB,AB?平面PAB,PA∩AB=A,
∴DG⊥平面PAB,∵DG∥EF,
∴EF⊥平面PAB.
解:(II)∵AB⊥平面PAD,PH?平面PAD,AD?平面PAD,
∴AB⊥PH,AB⊥AD,
又AB∥CD,PH⊥AD,
∴PH⊥平面ABCD,S△BCF=$\frac{1}{2}FC•AD$=$\frac{\sqrt{3}}{2}$.
∵E是PB的中點(diǎn),
∴E到平面ABCD的距離h=$\frac{1}{2}PH$=$\frac{3}{2}$.
∴VE-BFC=$\frac{1}{3}$S△BCF•h=$\frac{1}{3}×\frac{\sqrt{3}}{2}×\frac{3}{2}$=$\frac{\sqrt{3}}{4}$.
點(diǎn)評(píng) 本題考查了線面垂直的判定與性質(zhì),棱錐的體積計(jì)算,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x±2y=0 | B. | 2x±y=0 | C. | x±y=0 | D. | $\sqrt{2}x±y=0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (3,4) | B. | (2,3) | C. | $(\sqrt{3},4)$ | D. | $(\sqrt{3},2)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{\frac{π}{6},\frac{5π}{6}}]$ | B. | $({\frac{π}{6},\frac{5π}{6}})$ | C. | $({\frac{π}{6},\frac{π}{2}})∪({\frac{π}{2},\frac{5π}{6}})$ | D. | $[{\frac{π}{6},\frac{π}{2}})∪({\frac{π}{2},\frac{5π}{6}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24種 | B. | 28種 | C. | 32種 | D. | 16種 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com