【題目】已知與的夾角為,,,設(shè),.
(1)當(dāng)時(shí),求與的夾角大;
(2)是否存在實(shí)數(shù),使得與的夾角為鈍角,若存在求出的取值范圍,若不存在,說(shuō)明理由.
【答案】(1) (2)存在,
【解析】
(1)根據(jù)平面向量數(shù)量積的定義,結(jié)合已知條件求得.由向量模的定義求得、,結(jié)合平面向量數(shù)量積的夾角公式即可求解.
(2)根據(jù)兩個(gè)向量夾角為鈍角時(shí),數(shù)量積小于0,可得的取值范圍;當(dāng)向量與反向共線(xiàn)時(shí),數(shù)量積小于0但夾角不是鈍角,所以排除反向共線(xiàn)時(shí)的值.
(1)因?yàn)?/span>與的夾角為,,
所以
因?yàn)?/span>
所以
當(dāng)時(shí),
所以
所以
則
所以與的夾角為
(2)
假設(shè)存在實(shí)數(shù),使得與的夾角為鈍角
則
即
代入可得
所以
又當(dāng)向量與反向共線(xiàn)時(shí),數(shù)量積也小于0,但此時(shí)夾角為,不是鈍角
此時(shí)
可得,解得
所以當(dāng)時(shí)向量與反向共線(xiàn)
綜上可知當(dāng)時(shí)與的夾角為鈍角
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),為不同的兩點(diǎn),直線(xiàn),,以下命題中正確的序號(hào)為_(kāi)_________.
(1)不論為何值,點(diǎn)N都不在直線(xiàn)上;
(2)若,則過(guò)M,N的直線(xiàn)與直線(xiàn)平行;
(3)若,則直線(xiàn)經(jīng)過(guò)MN的中點(diǎn);
(4)若,則點(diǎn)M、N在直線(xiàn)的同側(cè)且直線(xiàn)與線(xiàn)段MN的延長(zhǎng)線(xiàn)相交.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公園內(nèi)有一塊以為圓心半徑為米的圓形區(qū)域.為豐富市民的業(yè)余文化生活,現(xiàn)提出如下設(shè)計(jì)方案:如圖,在圓形區(qū)域內(nèi)搭建露天舞臺(tái),舞臺(tái)為扇形區(qū)域,其中兩個(gè)端點(diǎn),分別在圓周上;觀(guān)眾席為梯形內(nèi)切在圓外的區(qū)域,其中,,且,在點(diǎn)的同側(cè).為保證視聽(tīng)效果,要求觀(guān)眾席內(nèi)每一個(gè)觀(guān)眾到舞臺(tái)處的距離都不超過(guò)米.設(shè),.問(wèn):對(duì)于任意,上述設(shè)計(jì)方案是否均能符合要求?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱(chēng)為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱(chēng)這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱(chēng)為橢圓的相似比.已知橢圓.
(1)若橢圓,判斷與是否相似?如果相似,求出與的相似比;如果不相似,請(qǐng)說(shuō)明理由;
(2)寫(xiě)出與橢圓相似且短半軸長(zhǎng)為的橢圓的方程;若在橢圓上存在兩點(diǎn)、關(guān)于直線(xiàn)對(duì)稱(chēng),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于曲線(xiàn)的下列說(shuō)法:(1)關(guān)于點(diǎn)對(duì)稱(chēng);(2)關(guān)于直線(xiàn)軸對(duì)稱(chēng);(3)關(guān)于直線(xiàn)對(duì)稱(chēng);(4)是封閉圖形,面積小于;(5)是封閉圖形,面積大于;(6)不是封閉圖形,無(wú)面積可言.其中正確的序號(hào)是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄A過(guò)定點(diǎn),且與定直線(xiàn)相切,點(diǎn)在上.
(1)求動(dòng)圓圓心的軌跡的方程;
(2)試過(guò)點(diǎn)且斜率為的直線(xiàn)與曲線(xiàn)相交于兩點(diǎn)。問(wèn):能否為正三角形?
(3)過(guò)點(diǎn)作兩條斜率存在且互相垂直的直線(xiàn),設(shè)與軌跡相交于,與軌跡相交于點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知圓的方程為,圓的方程為,若動(dòng)圓與圓內(nèi)切,與圓外切.
(Ⅰ)求動(dòng)圓圓心的軌跡的方程;
(Ⅱ)過(guò)直線(xiàn)上的點(diǎn)作圓的兩條切線(xiàn),設(shè)切點(diǎn)分別是,,若直線(xiàn)與軌跡交于,兩點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知件產(chǎn)品中有件是次品.
(1)任意取出件產(chǎn)品作檢驗(yàn),求其中至少有件是次品的概率;
(2)為了保證使件次品全部檢驗(yàn)出的概率超過(guò),最少應(yīng)抽取幾件產(chǎn)品作檢驗(yàn)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com