14.甲、乙、丙、丁、戊五人并排站成一排,若甲乙必須相鄰,且乙必須在甲的左邊,那么不同的站排方法共有24種.

分析 由題意,相鄰問題捆綁法,由于乙必須在甲的左邊,利用排列知識即可得出結(jié)論.

解答 解:由題意,相鄰問題捆綁法,由于乙必須在甲的左邊,
∴不同的站排方法共有${A}_{4}^{4}$=24種,
故答案為:24.

點(diǎn)評 本題考查排列知識的運(yùn)用,正確運(yùn)用相鄰問題捆綁法是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.y=(a-2)x在定義域內(nèi)是減函數(shù),則a的取值范圍是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.正四棱臺(tái)AC1的高是4cm,兩底面的邊長分別是4cm和10cm,求這個(gè)棱臺(tái)的表面積和體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}中,an=$\left\{\begin{array}{l}{{2}^{n-1},(n為正奇數(shù))}\\{2n-1,(n為正偶數(shù))}\end{array}\right.$,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,則S12=1443.(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知(5x-$\frac{1}{\sqrt{x}}$)n的展開式的各項(xiàng)系數(shù)之和為A,二項(xiàng)式系數(shù)之和為B,若A-B=56,則展開式中常數(shù)項(xiàng)為( 。
A.10B.-10C.-15D.1 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x3+bx2+cx+d的圖象過點(diǎn)P(0,1),且在點(diǎn)M(1,f(1))處的切線方程為2x-y-5=0.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.曲線f(x)=x3+1在點(diǎn)(1,2)處的切線與x軸、直線x=2所圍成的三角形的面積為( 。
A.$\frac{25}{3}$B.$\frac{25}{6}$C.$\frac{8}{3}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$\overrightarrow{a}$=(-2,1),|$\overrightarrow$|=5,且$\overrightarrow{a}$∥$\overrightarrow$,則$\overrightarrow$=$(-2\sqrt{5},\sqrt{5})$或$(2\sqrt{5},-\sqrt{5})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.三個(gè)正數(shù)a,b,c滿足a≤b+c≤2a,b≤a+c≤2b,則$\frac{a}$的取值范圍是( 。
A.[$\frac{2}{3}$,$\frac{3}{2}$]B.[$\frac{3}{2}$,+∞)C.[2,3]D.[1,2]

查看答案和解析>>

同步練習(xí)冊答案