A. | 10 | B. | -10 | C. | -15 | D. | 1 5 |
分析 先由條件利用二項(xiàng)式系數(shù)的性質(zhì),求得n的值,再利用二項(xiàng)式展開(kāi)式的通項(xiàng)公式求得展開(kāi)式中常數(shù)項(xiàng).
解答 解:令x=1,可得(5x-$\frac{1}{\sqrt{x}}$)n的展開(kāi)式的各項(xiàng)系數(shù)之和為A=4n,二項(xiàng)式系數(shù)之和為B=2n,
∵A-B=4n-2n=56,∴2n=8,∴n=3.
則展開(kāi)式的通項(xiàng)公式為T(mén)r+1=${C}_{3}^{r}$•(-1)r•53-r•${x}^{3-\frac{3r}{2}}$,令3-$\frac{3r}{2}$=0,求得r=2,
可得展開(kāi)式中常數(shù)項(xiàng)為${C}_{3}^{2}$•5=15,
故選:D.
點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | -2$\sqrt{2}$ | C. | $\frac{\sqrt{2}}{4}$ | D. | -$\frac{\sqrt{2}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 150° | B. | 120° | C. | 60° | D. | 30° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 學(xué)生的性別與他的數(shù)學(xué)成績(jī) | B. | 人的工作環(huán)境與健康狀況 | ||
C. | 女兒的身高與父親的身高 | D. | 正三角形的邊長(zhǎng)與面積 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com