【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,且tanC= ,c=﹣3bcosA.
(1)求tanB的值;
(2)若c=2,求△ABC的面積.
【答案】
(1)解:由正弦定理,得sinC=﹣3sinBcosA,
∵sinC=sin(A+B),
∴sin(A+B)=﹣3sinBcosA,sinAcosB+cosAsinB=﹣3sinBcosA,
即sinAcoB=﹣4sinBcosA,
∵cosAcoB≠0,
∴tanA=﹣4tanB,
又tanC=﹣tan(A+B)= = = ,解得tanB=
(2)解:由(1)知,sinA= ,sinB= ,sinC= ,
∵a= = ,
∴S△ABC= acsinB=
【解析】(1)由正弦定理,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式化簡已知可得sinAcoB=﹣4sinBcosA,結(jié)合cosAcoB≠0,利用同角三角函數(shù)基本關(guān)系式,兩角和的正切函數(shù)公式即可解得得解tanB的值.(2)由(1)利用同角三角函數(shù)基本關(guān)系式可求sinA= ,sinB= ,sinC= ,利用正弦定理可求a,進而利用三角形面積公式即可計算得解.
【考點精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識,掌握正弦定理:.
科目:高中數(shù)學 來源: 題型:
【題目】某市環(huán)保部門對市中心每天的環(huán)境污染情況進行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)與時刻(時)的關(guān)系為,,其中是與氣象有關(guān)的參數(shù),且.若用每天的最大值為當天的綜合污染指數(shù),并記作.
(1)令,,求的取值范圍;
(2)求的表達式,并規(guī)定當時為綜合污染指數(shù)不超標,求當在什么范圍內(nèi)時,該市市中心的綜合污染指數(shù)不超標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)滿足f(x+1)=﹣f(x),且f(x)是偶函數(shù),當x∈[0,1]時,f(x)=x2 , 若在區(qū)間[﹣1,3]內(nèi),函數(shù)g(x)=f(x)﹣kx﹣k有4個零點,則實數(shù)k的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)f(x)=sin(x+ )圖象上各點的橫坐標縮短到原來的 倍(縱坐標不變),再把得到的圖象向右平移 個單位,得到的新圖象的函數(shù)解析式為g(x)= , g(x)的單調(diào)遞減區(qū)間是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩超市同時開業(yè),第一年的全年銷售額為a萬元,由于經(jīng)營方式不同,甲超市前n年的總銷售額為 (n2-n+2)萬元,乙超市第n年的銷售額比前一年銷售額多a萬元.
(1)求甲、乙兩超市第n年銷售額的表達式;
(2)若其中某一超市的年銷售額不足另一超市的年銷售額的50%,則該超市將被另一超市收購,判斷哪一超市有可能被收購?如果有這種情況,將會出現(xiàn)在第幾年?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且3cosBcosC+1=3sinBsinC+cos2A.
(1)求角A的大。
(2)若 ,求b+c的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】古希臘人常用小石子在沙灘上擺成各種形狀來研究數(shù),例如:
他們研究過圖1中的1,3,6,10,…,由于這些數(shù)能夠表示成三角形,將其稱為三角形數(shù);類似地,稱圖2中的1,4,9,16,…這樣的數(shù)為正方形數(shù).下列數(shù)中既是三角形數(shù)又是正方形數(shù)的是
A. 289 B. 1 024 C. 1 225 D. 1 378
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點F,C上一點到焦點的距離為5.
(1)求C的方程;
(2)過F作直線l,交C于A,B兩點,若直線AB中點的縱坐標為,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,半徑為1的半圓O與等邊三角形ABC夾在兩平行線l1 , l2之間,l∥l1 , l與半圓相交于F,G兩點,與三角形ABC兩邊相交于E,D兩點.設(shè)弧 的長為x(0<x<π),y=EB+BC+CD,若l從l1平行移動到l2 , 則函數(shù)y=f(x)的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com