精英家教網 > 高中數學 > 題目詳情

【題目】對應的邊分別為,,

I)求角A,

II)求證:

III)若,且BC邊上的中線AM長為,求的面積。

【答案】;()詳見解析;(

【解析】

試題1)已知等式利用正弦定理化簡,利用兩角和與差的正弦函數公式及二倍角的正弦函數公式化簡,再利用誘導公式化簡求出sinA的值,即可確定出A的度數;
2)表示出所證不等式左右兩邊之差,利用余弦定理及完全平方公式性質化簡,判斷差的正負即可得證;
3)由a=b,得到A=B,求出C的度數,在三角形AMC中,由AM的長與cosC的值,求出AC的長,利用三角形面積公式求出三角形ABC面積即可.

試題解析:

(1),,

.

,

(2)

.

(3)由及(1),知

.

中,由余弦定理

,解得.

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知圓以原點為圓心,且圓與直線相切.

(Ⅰ)求圓的方程;

(Ⅱ)若直線與圓交于、兩點,分別過、兩點作直線的垂線,交軸于、兩點,求線段的長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,已知長方形ABCDAD=2CD=4,MN分別為AD、BC的中點,將長方形ABCD沿MN折到MNFE位置,且使平面MNFE⊥平面ABCD

1)求證:直線CM⊥面DFN;

2)求點C到平面FDM的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國南宋時期著名的數學家秦九韶在其著作《數書九章》中,提出了已知三角形三邊長求三角形的面積的公式,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數學水平,其求法是:以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.若把以上這段文字寫成公式,即,其中a、bc分別為內角A、BC的對邊.,,則面積S的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】重慶一中為了增強學生的記憶力和辨識力,組織了一場類似《最強大腦》的賽,兩隊各由4名選手組成,每局兩隊各派一名選手,除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設每局比賽隊選手獲勝的概率均為,且各局比賽結果相互獨立,比賽結束時隊的得分高于隊的得分的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l經過直線2x+y-5=0x-2y=0的交點P

1)若直線l平行于直線l14x-y+1=0,求l的方程;

2)若直線l垂直于直線l14x-y+1=0,求l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,點是直線上的動點,定點 的中點,動點滿足.

(1)求點的軌跡的方程

(2)過點的直線交軌跡兩點,上任意一點,直線兩點,以為直徑的圓是否過軸上的定點? 若過定點,求出定點的坐標;若不過定點,說明理由。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在四棱錐中,平面,,點的交點,點在線段上,且.

(1)證明:平面

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案