【題目】已知函數(shù)有兩個不同的零點,.

1)求a的范圍;

2)證明:.

【答案】12)見解析

【解析】

1)分類討論參數(shù)的范圍,利用導(dǎo)數(shù)得出單調(diào)性,結(jié)合函數(shù)的零點個數(shù),得出的范圍;

2)不妨設(shè),由(1)可知,,結(jié)合函數(shù)的單調(diào)性,得出等價于,即,構(gòu)造函數(shù),,求出,即可得出結(jié)論.

1

當(dāng)時,;

上單調(diào)遞減,在上單調(diào)遞增,

,且當(dāng)x→﹣∞時,fx)→+∞,當(dāng)x+∞時,fx)→+∞,

則函數(shù)有兩個不同的零點,,

當(dāng)時,

上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增

結(jié)合可知,此時函數(shù)只有一個零點

當(dāng)時,;

上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增

結(jié)合,可知,此時函數(shù)只有一個零點,

當(dāng)a0時,fx)=xex只有一個零點x0,不合題意;

綜上,.

2)不妨設(shè),由(1)可知,

上單調(diào)遞減

等價于,即

由于,而

設(shè),,則

則函數(shù)上單調(diào)遞減,

,從而

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】名學(xué)生某次數(shù)學(xué)考試成績(單位:分)的頻率分布直方圖如圖所示:

1)求頻率分布直方圖中實數(shù)的值;

2)估計20名學(xué)生成績的平均數(shù);

3)從成績在的學(xué)生中任選2人,求此2人的成績不都在中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個湖的邊界是圓心為的圓,湖的一側(cè)有一條直線型公路,湖上有橋是圓的直徑).規(guī)劃在公路上選兩個點,并修建兩段直線型道路.規(guī)劃要求:線段上的所有點到點的距離均不小于圓的半徑.已知點到直線的距離分別為為垂足),測得,,(單位:百米).

1)若道路與橋垂直,求道路的長;

2)在規(guī)劃要求下,中能否有一個點選在處?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在銳角△ABC中,∠BAC≠60°,過點B、C分別作△ABC外接圓的切線BD、CE,且滿足,直線DE與AB、AC的延長線分別交于點F、G、CF與BD交于點M,CE與BG交于點N.證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某地有三家工廠,分別位于矩形ABCD的頂點A,B以及CD的中點P處,已知AB=20km,CB=10km,為了處理三家工廠的污水,現(xiàn)要在矩形ABCD內(nèi)(含邊界),且與A,B等距離的一點O處建造一個污水處理廠,并鋪設(shè)排污管道AO,BO,OP,設(shè)排污管道的總長為km

(I)設(shè),將表示成的函數(shù)關(guān)系式;

(II)確定污水處理廠的位置,使三條排污管道的總長度最短,并求出最短值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201818日,中共中央國務(wù)院隆重舉行國家科學(xué)技術(shù)獎勵大會,在科技界引發(fā)熱烈反響,自主創(chuàng)新正成為引領(lǐng)經(jīng)濟社會發(fā)展的強勁動力.某科研單位在研發(fā)新產(chǎn)品的過程中發(fā)現(xiàn)了一種新材料,由大數(shù)據(jù)測得該產(chǎn)品的性能指標(biāo)值y與這種新材料的含量x(單位:克)的關(guān)系為:當(dāng)時,yx的二次函數(shù);當(dāng)時,測得數(shù)據(jù)如下表(部分):

x(單位:克)

0

1

2

9

y

0

3

1)求y關(guān)于x的函數(shù)關(guān)系式;

2)當(dāng)該產(chǎn)品中的新材料含量x為何值時,產(chǎn)品的性能指標(biāo)值最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐P—ABCD中,PA⊥平面ABCD,∠DAB=∠ADC=90°,DC=AB,F(xiàn),M分別是線段PC,PB的中點.

(1)在線段AB上找出一點N,使得平面CMN∥平面PAD,并給出證明過程;

(2)若PA=AB,DC=AD,求二面角C—AF—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】山東省于2015年設(shè)立了水下考古研究中心,以此推動全省的水下考古、水下文化遺產(chǎn)保護等工作;水下考古研究中心工作站,分別設(shè)在位于劉公島的中國甲午戰(zhàn)爭博物院和威海市博物館。為對劉公島周邊海域水底情況進行詳細(xì)了解,然后再選擇合適的時機下水探摸、打撈,省水下考古中心在一次水下考古活動中,某一潛水員需潛水米到水底進行考古作業(yè),其用氧量包含以下三個方面:

①下潛平均速度為米/分鐘,每分鐘的用氧量為升;

②水底作業(yè)時間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.4升;

③返回水面時,平均速度為米/分鐘,每分鐘用氧量為0.32升.

潛水員在此次考古活動中的總用氧量為升.

(Ⅰ)如果水底作業(yè)時間是分鐘,將表示為的函數(shù);

(Ⅱ)若,水底作業(yè)時間為20分鐘,求總用氧量的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形中,,,,,分別是,的中點,將四邊形沿直線進行翻折,給出下列四個結(jié)論:①;②③平面平面;④平面平面,則上述結(jié)論可能正確的是( ).

A.①③B.②③C.②④D.③④

查看答案和解析>>

同步練習(xí)冊答案