【題目】如圖,甲從A到B,乙從C到D,兩人每次都只能向上或者向右走一格,如果兩個人的線路不相交,則稱這兩個人的路徑為一對孤立路,那么不同的孤立路一共有________對. (用數(shù)字作答)
【答案】1750
【解析】
先分析甲乙分別到B,D的走法,各有種不同的走法,由分步乘法計數(shù)原理知共有路徑,
分析相同的路徑,甲從A走到D與乙從C走到B的路徑都相交,共有對相交路徑,故孤立路共有.
甲從A到B,需要向右走4步,向上走4步,共需8步,所以從A到B共有種走法,
乙從C到D,需要向右走4步,向上走4步,共需8步,所以從A到B共有種走法,
根據(jù)分步乘法計數(shù)原理可知,共有不同路徑對,
甲從A到D,需要向右走6步,向上走4步,共需10步,所以從A到D共有種走法,
乙從C到B,需要向右走2步,向上走4步,共需6步,所以從C到B共有種走法,
所以相交路徑共有對,
因此不同的孤立路一共有對.
故答案為:1750
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某景區(qū)的各景點(diǎn)從2009年取消門票實(shí)行免費(fèi)開放后,旅游的人數(shù)不斷地增加,不僅帶動了該市淡季的旅游,而且優(yōu)化了旅游產(chǎn)業(yè)的結(jié)構(gòu),促進(jìn)了該市旅游向“觀光、休閑、會展”三輪驅(qū)動的理想結(jié)構(gòu)快速轉(zhuǎn)變.下表是從2009年至2018年,該景點(diǎn)的旅游人數(shù)(萬人)與年份的數(shù)據(jù):
第年 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
旅游人數(shù)(萬人) | 300 | 283 | 321 | 345 | 372 | 435 | 486 | 527 | 622 | 800 |
該景點(diǎn)為了預(yù)測2021年的旅游人數(shù),建立了與的兩個回歸模型:
模型①:由最小二乘法公式求得與的線性回歸方程;
模型②:由散點(diǎn)圖的樣本點(diǎn)分布,可以認(rèn)為樣本點(diǎn)集中在曲線的附近.
(1)根據(jù)表中數(shù)據(jù),求模型②的回歸方程.(精確到個位,精確到0.01).
(2)根據(jù)下列表中的數(shù)據(jù),比較兩種模型的相關(guān)指數(shù),并選擇擬合精度更高、更可靠的模型,預(yù)測2021年該景區(qū)的旅游人數(shù)(單位:萬人,精確到個位).
回歸方程 | ① | ② |
30407 | 14607 |
參考公式、參考數(shù)據(jù)及說明:
①對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計分別為.②刻畫回歸效果的相關(guān)指數(shù);③參考數(shù)據(jù):,.
5.5 | 449 | 6.05 | 83 | 4195 | 9.00 |
表中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護(hù)意識,高二年級準(zhǔn)備成立一個環(huán)境保護(hù)興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護(hù)興趣小組,再從這10人的興趣小組中抽出4人參加學(xué)校的環(huán)保知識競賽.
(1)設(shè)事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;
(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,并在兩種坐標(biāo)系中取相同的長度單位,已知直線l的參數(shù)方程為(t為參數(shù)),圓C的極坐標(biāo)方程為
(1)求直線l和圓C的直角坐標(biāo)方程;
(2)若點(diǎn)在圓C上,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由于濃酸泄漏對河流形成了污染,現(xiàn)決定向河中投入固體堿,1個單位的固體堿在水中逐步溶化,水中的堿濃度與時間的關(guān)系,可近似地表示為,只有當(dāng)河流中堿的濃度不低于1時,才能對污染產(chǎn)生有效的抑制作用.
(1)如果只投放1個單位的固體堿,則能夠維持有效抑制作用的時間有多長?
(2)當(dāng)河中的堿濃度開始下降時,即刻第二次投放1個單位的固體堿,此后,每一時刻河中的堿濃度認(rèn)為是各次投放的堿在該時刻相應(yīng)的堿濃度的和,求河中堿濃度可能取得的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從金山區(qū)走出去的陳馳博士,在《自然—可持續(xù)性》雜志上發(fā)表的論文中指出:地球正在變綠,中國通過植樹造林和提高農(nóng)業(yè)效率,在其中起到了主導(dǎo)地位.已知某種樹木的高度(單位:米)與生長年限(單位:年,tN*)滿足如下的邏輯斯蒂函數(shù):,其中e為自然對數(shù)的底數(shù). 設(shè)該樹栽下的時刻為0.
(1)需要經(jīng)過多少年,該樹的高度才能超過5米?(精確到個位)
(2)在第幾年內(nèi),該樹長高最快?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,試證明:函數(shù)有且僅有兩個零點(diǎn),且.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)滿足,.
(1)若,,求實(shí)數(shù)的取值范圍;
(2)若有三個零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com