18.由直線x=0,y=0與y=cos2x(x∈[0,$\frac{π}{4}$])所圍成的封閉圖形的面積是( 。
A.$\sqrt{2}$B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

分析 先確定積分區(qū)間,再利用定積分表示面積,即可求出結(jié)論.

解答 解:由直線x=0,y=0與y=cos2x(x∈[0,$\frac{π}{4}$])所圍成的封閉圖形的面積S=${∫}_{0}^{\frac{π}{4}}$cos2xdx=$\frac{1}{2}$sin2x|${\;}_{0}^{\frac{π}{4}}$=$\frac{1}{2}$,
故選:D.

點(diǎn)評 本題考查利用定積分求面積,解題的關(guān)鍵是確定被積函數(shù)與被積區(qū)間,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.正四棱錐底面邊長為a,側(cè)面積是底面積的2倍,則它的體積是$\frac{\sqrt{3}}{6}{a}^{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在未來3天中,某氣象臺預(yù)報(bào)天氣的準(zhǔn)確率為0.8,則在未來3天中,至少連續(xù)2天預(yù)報(bào)準(zhǔn)確的概率是0.768.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,已知向量$\overrightarrow{AB}$=(2,2),|$\overrightarrow{AC}$|=2,$\overrightarrow{AB}$•$\overrightarrow{AC}$=-4,則∠A=(  )
A.$\frac{5π}{6}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.“雙曲線C的漸近線為y=±$\sqrt{2}$x”是“雙曲線C的離心率為$\sqrt{3}$”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|x2-2x>0},B={x|x>1},則(∁RA)∩B等于( 。
A.[1,2)B.(1,2)C.(1,2]D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若x,y滿足約束條件$\left\{\begin{array}{l}{|x-y|≤2}\\{x+3y-14≤0}\\{x,y∈{N}^{*}}\end{array}\right.$,則z=x+y的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.定義max{b,c}表示實(shí)數(shù)b,c中的較大的數(shù).已知數(shù)列{an}滿足a1=a(a>0),a2=1,an+2=$\frac{2max\{{a}_{n+1},2\}}{{a}_{n}}$(n∈N*),若a2015=4a,則實(shí)數(shù)a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在等差數(shù)列{an}中,a1=3,其前n項(xiàng)和為Sn,等比數(shù)列{bn}的各項(xiàng)均為正數(shù),b1=1,b2+S3=21,b3=S2
(1)求an與bn;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn,求使不等式4Tn>S15成立的最小正整數(shù)n的值.

查看答案和解析>>

同步練習(xí)冊答案