12.將函數(shù)f(x)=$\sqrt{3}$sinx+3cosx的圖象向右平移m(m>0)個(gè)單位長(zhǎng)度后,所得到的圖象關(guān)于y軸對(duì)稱,則m的最小值是( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

分析 由條件利用三角函數(shù)的恒等變換化簡(jiǎn)函數(shù)的解析式,再利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)、余弦函數(shù)的奇偶性,可得m=-kπ-$\frac{π}{6}$,由此求得m的最小值.

解答 解:把函數(shù)y=$\sqrt{3}$sinx+3cosx=2$\sqrt{3}$cos(x-$\frac{π}{6}$) 的圖象向右平移m(m>0)個(gè)單位長(zhǎng)度后,
所得到的圖象對(duì)應(yīng)函數(shù)的解析式為y=2$\sqrt{3}$cos(x-$\frac{π}{6}$-m),
再根據(jù)所得圖象關(guān)于y軸對(duì)稱,可得y=2$\sqrt{3}$cos(x-$\frac{π}{6}$-m)為偶函數(shù),
故有-m-$\frac{π}{6}$=kπ,k∈z,即 m=-kπ-$\frac{π}{6}$,則當(dāng)k=-1時(shí),m的最小值為$\frac{5π}{6}$,
故選:D.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的恒等變換,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的奇偶性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ex-x
(1)求曲線y=f(x)在(1,f(1))處的切線方程;
(2)當(dāng)x>0,f(2x)-4bf(x)>f(-2x)-4bf(-x)恒成立,求b的最大值;
(3)解關(guān)于x的不等式:$\left\{\begin{array}{l}f(x)≤f(1)\\ f(-x)≤f(1)\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某籃球運(yùn)動(dòng)員在一次投籃訓(xùn)練中得分ξ的分布列如表所示,其中a,b,c成等差數(shù)列,且c=ab,則這名運(yùn)動(dòng)員投中3分的概率是( 。
ξ023
Pabc
A.$\frac{1}{4}$B.$\frac{1}{7}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知銳角A是三角形ABC的一個(gè)內(nèi)角,a,b,c是各內(nèi)角所對(duì)的邊,若sin2A-cos2A=$\frac{1}{2}$,則下列各式正確的是( 。
A.b+c≤2aB.a+c≤2bC.a+b≤2cD.a2≤bc

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知等差數(shù)列{an}共有20項(xiàng),所有奇數(shù)項(xiàng)和為132,所有偶數(shù)項(xiàng)和為112,則等差數(shù)列的公差d=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)S=$\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}$+$\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}$+$\sqrt{1+\frac{1}{3^2}+\frac{1}{4^2}}$+…+$\sqrt{1+\frac{1}{{{{2015}^2}}}+\frac{1}{{{{2016}^2}}}}$,則不大于S的最大整數(shù)[S]等于( 。
A.2013B.2014C.2015D.2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知f(x)是定義域?yàn)镽的偶函數(shù),且f(2+x)=f(2-x),當(dāng)x∈[0,2]時(shí),f(x)=x2-2x,則f(-5)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=-f(x),則f(10)+f(12)的值是( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(x)=$-{x^2}+2x+4,g(x)=-x+4,定義F(x)=\left\{\begin{array}{l}g(x)\\ f(x)\end{array}\right.\begin{array}{l},{f(x)≥g(x)}\\,{f(x)<g(x)}\end{array}$,則F(x)的最大值為( 。
A.1B.4C.5D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案