已知等比數(shù)列中,公比 有(  )
A.最小值-4B.最大值-4C.最小值12 D.最大值12
C

試題分析:因為等比數(shù)列中,公比所以,=,當且僅當q=1時, 有最小值12,故選C。
點評:小綜合題,根據(jù)已知條件,得到q的函數(shù)式,應(yīng)用均值定理求得最值。應(yīng)用均值定理應(yīng)注意“一正、二定、三相等”。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)數(shù)列滿足
(Ⅰ)求的通項公式;
(Ⅱ)設(shè),記,證明:。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共12分)
已知是以a為首項,q為公比的等比數(shù)列,為它的前n項和.
(Ⅰ)當、成等差數(shù)列時,求q的值;
(Ⅱ)當、、成等差數(shù)列時,求證:對任意自然數(shù)k,、也成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知a、b、c成等差數(shù)列,則直線被曲線截得的弦長的最小值為
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
已知數(shù)列滿足,數(shù)列滿足,數(shù)列
滿足
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ),,試比較的大小,并證明;
(Ⅲ)我們知道數(shù)列如果是等差數(shù)列,則公差是一個常數(shù),顯然在本題的數(shù)列中,不是一個常數(shù),但是否會小于等于一個常數(shù)呢,若會,請求出的范圍,若不會,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)、對任意實數(shù)都滿足條件
,且,和②,且
(Ⅰ)求數(shù)列、的通項公式;(為正整數(shù))
(II)設(shè),求數(shù)列的前項和。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知數(shù)列是各項不為0的等差數(shù)列,為其前n
項和,且滿足, 令,數(shù)列
前n項和為.
(1)求數(shù)列的通項公式及數(shù)列的前n項和;
(2) 是否存在正整數(shù),使得,,成等比數(shù)列?若存在,求出所有的 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

、 設(shè),為實數(shù),首項為,公差為的等差數(shù)列的前項和為,滿足.
(1)若, 求;
(2)求的取值范圍.(12分)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)已知數(shù)列是以d為公差的等差數(shù)列,數(shù)列是以q為公比的
等比數(shù)列。
(1)若數(shù)列的前n項和為,求整數(shù)q的值;
(2)在(1)的條件下,試問數(shù)列中最否存在一項,使得恰好可以表示為該數(shù)列
中連續(xù)項的和?請說明理由;
(3)若,求證:數(shù)列
中每一項都是數(shù)列中的項。

查看答案和解析>>

同步練習冊答案