15.在△ABC中,角A,B,C所對的邊分別為a,b,c,若sin(A+B)=$\frac{1}{3}$,a=3,c=4,則sinA=( 。
A.$\frac{2}{3}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{1}{6}$

分析 由內(nèi)角和定理及誘導(dǎo)公式知sin(A+B)=sinC=$\frac{1}{3}$,再利用正弦定理求解.

解答 解:∵A+B+C=π,
∴sin(A+B)=sinC=$\frac{1}{3}$,
又∵a=3,c=4,
∴$\frac{a}{sinA}$=$\frac{c}{sinC}$,
即$\frac{3}{sinA}$=$\frac{4}{\frac{1}{3}}$,
∴sinA=$\frac{1}{4}$,
故選B.

點評 本題考查了三角形內(nèi)角和定理及誘導(dǎo)公式,正弦定理的綜合應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)2134與1455的最大公約數(shù)為m,則m化為三進制數(shù)為10121(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,三棱柱ABC-A1B1C1中,側(cè)面AA1C1C⊥底面ABC,AA1=A1C=AC=2,BC=1,且AC⊥BC,點D,E,F(xiàn)分別為AC,AB,A1C1的中點.
(Ⅰ)求證:A1D⊥平面ABC;
(Ⅱ)求證:EF∥平面BB1C1C;
(Ⅲ)寫出四棱錐A1-BB1C1C的體積.(只寫出結(jié)論,不需要說明理由)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,四邊形PCBM是直角梯形,∠PCB=90°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,AM=2.
(Ⅰ)求證:平面PAC⊥平面ABC;
(Ⅱ)求三棱錐P-MAC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,已知直三棱柱ABC-A1B1C1的底面是邊長為2的正三角形,E,F(xiàn)分別是AA1和CC1的中點,且BE⊥B1F.
(Ⅰ)求證B1F⊥平面BEC1;
(Ⅱ)求三棱錐B1-BEC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.正態(tài)分布ξ~N(a,32),且P(ξ<2a-3)=P(ξ>a+2),則a的值為(  )
A.$\frac{7}{3}$B.$\frac{4}{3}$C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.執(zhí)行如圖所示的程序框圖,若輸入x=6,則輸出y的值為-$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.某幾何體的三視圖如圖所示,正視圖與側(cè)視圖完全相同,則該幾何體的體積為$\frac{64-8π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,橢圓的右焦點F到雙曲線x2-y2=1的一條漸近線的距離為$\frac{\sqrt{2}}{2}$,已知過點F斜率為k1直線l交橢圓于A,B兩點.
(1)求橢圓的方程;
(2)設(shè)線段AB的中點為M,直線OM(其中O為原點)的斜率為k2,判斷k1•k2是否為定值,如果是,求出該值;如果不是,說明理由.

查看答案和解析>>

同步練習(xí)冊答案