4.設(shè)P={質(zhì)數(shù)},Q={偶數(shù)},則P∩Q等于( 。
A.{2}B.2C.ND.

分析 通過唯一的質(zhì)偶數(shù)是2,與Q集合求出交集即可.

解答 解:因為P={質(zhì)數(shù)},Q={偶數(shù)},
P中唯一的偶數(shù)是2,
所以P∩Q={2}.
故選A.

點評 本題考查集合的交集的求法,質(zhì)數(shù)與偶數(shù)的定義,基本知識的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中與函數(shù)y=x相等的函數(shù)是( 。
A.y=log22xB.y=$\sqrt{{x}^{2}}$C.y=2${\;}^{lo{g}_{2}x}$D.y=($\sqrt{x}$)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,有一壁畫,最高點A處離地面AO=4m,最低點B處離地面BO=2m,觀賞它的C點在過墻角O點與地面成30°角的射線上.
(1)設(shè)點C到墻的距離為x,當(dāng)x=$\sqrt{3}$m時,求tanθ的值;
(2)問C點離墻多遠時,視角θ最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在△ABC中,角A、B、C的對邊分別為a、b、c,且滿足bcosC+$\sqrt{3}$bsinC=a+c.
(Ⅰ)求角B;
(Ⅱ)若b=$\sqrt{3}$,求2a-c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若集合A={x|x2+ax+b=0},B={3},且A=B,則實數(shù)a=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.有5根細木棍,長度分別為1、3、5、7、9(cm),從中任取三根,能搭成三角形的概率為((  )
A.$\frac{3}{20}$B.$\frac{2}{5}$C.$\frac{1}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知集合A={0,1,2,3,4,6,7},集合B={1,2,4,8,0},則A∩B=(  )
A.{1,2,4,0}B.{2,4,8}C.{1,2,8}D.{1,2,9}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等比數(shù)列{an}的前n項和為Sn,若Sn=3•2n+k(n∈N*,k為常數(shù)),則k值為( 。
A.-3B.3C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列四個命題:
①經(jīng)過定點P0(x0,y0)的直線都可以用方程y-y0=k(x-x0)表示;
②經(jīng)過定點A(0,b)的直線都可以用方程y=kx+b表示;
③不經(jīng)過原點的直線都可以用方程$\frac{x}{a}$+$\frac{y}$=1表示;
④經(jīng)過任意兩個不同的 點P1(x1,y1)、P2(x2,y2)的直線都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示;
其中真命題的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊答案