8.求適合等式:(2x-1)+i=y+(y-3)i的x,y值,其中x∈R,y是純虛數(shù).

分析 利用兩復(fù)數(shù)相等等價(jià)于實(shí)部與虛部分別相等.

解答 解:∵x∈R,y是純虛數(shù),∴可設(shè)x=a,y=bi(a,b∈R,b≠0).
代入等式得(2a-1)+i=bi+(bi-3)i,即(2a-1)+i=-b+(b-3)i.
∴$\left\{\begin{array}{l}{2a-1=-b}\\{1=b-3}\end{array}\right.$,解得$\left\{\begin{array}{l}{a=-\frac{3}{2}}\\{b=4}\end{array}\right.$,
∴x=-$\frac{3}{2}$,y=4i.

點(diǎn)評 本題考查了復(fù)數(shù)相等、純虛數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)$y=2sin(ωx+\frac{π}{6})\;(ω>0)$的圖象的兩條相鄰對稱軸的距離是$\frac{π}{2}$,則ω=( 。
A.4B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知a,b,c分別為△ABC的三個內(nèi)角A,B,C對應(yīng)的邊長,△ABC的面積$S=\frac{{\sqrt{3}}}{2}abcosC$,
( I)求角C的大小;
(Ⅱ)若c=2,求a+b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知等比數(shù)列{an}中,a3=3,a10=384,則該數(shù)列的通項(xiàng)an=( 。
A.3•2n-4B.3•2n-3C.3•2n-2D.3•2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.將53轉(zhuǎn)化為二進(jìn)制的數(shù)結(jié)果是110101(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在去年某段時間內(nèi),一件商品的價(jià)格x元和需求量y件之間的一組數(shù)據(jù)為:
x(元)1416182022
Y(件)1210753
且知x與y具有線性相關(guān)關(guān)系,
(1)求出y對x的線性回歸方程,并預(yù)測商品價(jià)格為24元時需求量的大。
(2)計(jì)算R2(保留三位小數(shù)),并說明擬合效果的好壞.
參考公式:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$x,R2=$\frac{\sum_{i=1}^{n}({y}_{i}-\widehat{y})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.下列說法:
①y=tanx在其定義域內(nèi)為增函數(shù);
②$y=sin|{2x+\frac{π}{6}}|$的最小正周期為π.
③已知$\overrightarrow a=(2,λ)$,$\overrightarrow b=(-3,5)$,且$\overrightarrow a$與$\overrightarrow b$的夾角為鈍角,則λ的取值范圍是$({-∞,\frac{6}{5}})$;
④函數(shù)y=a+2•2x+4x在x∈(-∞,1]上y<0恒成立,則a<-8.
其中正確的是④.(寫出所有正確答案)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知點(diǎn)P是橢圓$\frac{x^2}{16}+\frac{y^2}{8}$=1(xy≠0)上的動點(diǎn),F(xiàn)1,F(xiàn)2分別是橢圓的左,右焦點(diǎn),O為原點(diǎn),若M是∠F1PF2的角平分線上的一點(diǎn),且F1M⊥MP,則OM的長度取值范圍( 。
A.[0,3)B.$({0,2\sqrt{2}})$C.$[{2\sqrt{2},3})$D.[0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.若函數(shù)f(x)=x2+(2a-1)x+1-2a在區(qū)間(-1,0)及(0,$\frac{1}{2}$)內(nèi)各有一個零點(diǎn),則實(shí)數(shù)a的取值范圍是$(\frac{1}{2},\frac{3}{4})$.

查看答案和解析>>

同步練習(xí)冊答案