3.在長為3的線段上任取一點,則該點到兩端點的距離都不小于1的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

分析 由題意可得,屬于與區(qū)間長度有關(guān)的幾何概率模型,試驗的全部區(qū)域長度為4,基本事件的區(qū)域長度為2,代入幾何概率公式可求

解答 解:設(shè)“長為3的線段AB”對應(yīng)區(qū)間[0,3]
“與線段兩端點A、B的距離均不小于1”為事件 A,則滿足A的區(qū)間為[1,2]
根據(jù)幾何概率的計算公式可得,P(A)=$\frac{2-1}{3-0}$=$\frac{1}{3}$,
故選:A.

點評 本題主要考查了幾何概型,解答的關(guān)鍵是將原問題轉(zhuǎn)化為幾何概型問題后應(yīng)用幾何概率的計算公式求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}是首項為1,公差不為0的等差數(shù)列,且a1,a3,a17成等比數(shù)列
(1)求數(shù)列{an}的通項公式;
(2)若bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,Sn是數(shù)列{bn}的前n項和,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知 a∈R,函數(shù) f(x)=a-$\frac{1}{{{2^x}+1}}$.
(1)證明:f(x)在(-∞,+∞)上單調(diào)遞增;
(2)若f(x)為奇函數(shù),求:
①a的值;
②f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.f(x)=x•ex-1的零點個數(shù)為1個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若正四棱柱ABCD-A1B1C1D1的底面邊長為1,AB1與底面ABCD成60°角,則D1到底面ABCD的距離為( 。
A.$\frac{\sqrt{3}}{3}$B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.$\root{3}{{\sqrt{a}}}$的化簡結(jié)果是( 。
A.${a^{\frac{1}{3}}}$B.${a^{\frac{3}{2}}}$C.${a^{\frac{2}{3}}}$D.${a^{\frac{1}{6}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+x+\frac{7}{4},x∈[0,\frac{1}{2}]\\{x^3}+ln(\sqrt{3}e-x),x∈(\frac{1}{2},\frac{7}{4})\\-x+2,x∈[\frac{7}{4},2]\end{array}$,若${x_1}∈[0.\frac{1}{2}]$,x2=f(x1),x1=f(x2),則x1=( 。
A.$\frac{{2-\sqrt{3}}}{2}$B.$\frac{{2-\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}-1}}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,在三棱錐A-BCD中,DA,DB,DC兩兩垂直,且DB=DC,E為BC中點,則$\overrightarrow{AE}•\overrightarrow{BC}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)全集U={2,4,-(a-3)2},集合A={2,a2-a+2},若∁UA={-1},求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案