12.如圖,在三棱錐A-BCD中,DA,DB,DC兩兩垂直,且DB=DC,E為BC中點(diǎn),則$\overrightarrow{AE}•\overrightarrow{BC}$=0.

分析 根據(jù)兩個(gè)要求數(shù)量積的向量的位置,把這兩個(gè)向量用以D為起點(diǎn)的向量來表示,整理出含有向量的數(shù)量積的表示形式,根據(jù)垂直和長度關(guān)系得到結(jié)果.

解答 解:∵$\overrightarrow{AE}•\overrightarrow{BC}$=$\frac{1}{2}$($\overrightarrow{AB}$+$\overrightarrow{AC}$)•($\overrightarrow{DC}-\overrightarrow{DB}$)
=$\frac{1}{2}$($\overrightarrow{DB}-\overrightarrow{DA}+\overrightarrow{DC}-\overrightarrow{DA}$)•($\overrightarrow{DC}$-$\overrightarrow{DB}$),
=$\frac{1}{2}$($\overrightarrow{DB}-2\overrightarrow{DA}+\overrightarrow{DC}$)•($\overrightarrow{DC}-\overrightarrow{DB}$),
=$\frac{1}{2}$$\overrightarrow{DB}•\overrightarrow{DC}$-$\frac{1}{2}$${\overrightarrow{DB}}^{2}$-$\overrightarrow{DA}•\overrightarrow{DC}$+$\overrightarrow{DA}•\overrightarrow{DB}$+$\frac{1}{2}$${\overrightarrow{DC}}^{2}$-$\frac{1}{2}$$\overrightarrow{DC}•\overrightarrow{DB}$,
∵DA,DB,DC兩兩垂直,且DB=DC,
∴$\overrightarrow{AE}•\overrightarrow{BC}$=0,
故答案為:0.

點(diǎn)評(píng) 本題考查空間向量的數(shù)量積的運(yùn)算,本題解題的關(guān)鍵是把要求數(shù)量積的向量表示成已知向量的和或差的形式,再進(jìn)行數(shù)量積的運(yùn)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.對(duì)于任意實(shí)數(shù)a、b、c、d,下列命題中,
①若a>b,c>d,則a-c>b-d;
②若a>b>0,c>d>0,則ac>bd;
③若a>b>0,則$\root{3}{a}$>$\root{3}$
④若a>b>0,則$\frac{1}{{a}^{2}}$<$\frac{1}{^{2}}$
真命題的個(gè)數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在長為3的線段上任取一點(diǎn),則該點(diǎn)到兩端點(diǎn)的距離都不小于1的概率為(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一天中對(duì)某人的心跳檢測了8次,得到如表所示的數(shù)據(jù)
檢測次數(shù)12345678
檢測數(shù)據(jù)a(次/分鐘)5960626263656667
上述數(shù)據(jù)的統(tǒng)計(jì)分析中,一部分計(jì)算見如圖所示的程序框圖(其中$\overline{a}$是這8個(gè)數(shù)的平均數(shù)),則輸出的值是(  )
A.$\sqrt{7}$B.7C.8D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=-x3+2ex2-x2+mx-e2(x>0),若f(x)=0有兩個(gè)相異實(shí)根,則實(shí)數(shù)m的取值范圍是(  )
A.(-e2+2e,0)B.(-e2+2e,+∞)C.(0,e2-2e)D.(-∞,-e2+2e)

第Ⅱ卷

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)點(diǎn)G,M分別是△ABC的重心和外心,A(-1,0),B(1,0),且$\overrightarrow{GM}∥\overrightarrow{AB}$.
(1)求點(diǎn)C的軌跡E的方程;
(2)已知點(diǎn)$D(-\frac{1}{2},0)$,是否存在直線,使過點(diǎn)(0,1)并與曲線E交于P,Q兩點(diǎn),且∠PDQ為鈍角.若存在,求出直線的斜率k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.計(jì)算:
(1)${27^{\frac{2}{3}}}-{2^{{{log}_2}3}}×{log_2}\frac{1}{8}$;
(2)$\frac{1}{{\sqrt{5}-2}}-{(\sqrt{5}+2)^0}-\sqrt{{{({2-\sqrt{5}})}^2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)的定義域?yàn)镽,若存在常數(shù)m>0,使|f(x)|≤m|x|對(duì)一切實(shí)數(shù)x均成立,則稱f(x)為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù):①f(x)=0;②f(x)=x2;③f(x)=$\frac{x}{{x}^{2}+x+1}$;④f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),且對(duì)一切x1,x2均有|f(x1)-f(x2)|≤2|x1-x2|.其中是“倍約束函數(shù)”的序號(hào)是(  )
A.①②④B.③④C.①④D.①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知復(fù)數(shù)$z=\frac{1+ai}{1-i}(a∈R)$,若z為純虛數(shù),則a的值為(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案