分析 根據(jù)三元基本不等式a+b+c≥3$\root{3}{abc}$(a,b,c>0,a=b=c取得等號),由y=x2(2-x)=$\frac{1}{2}$•x•x•(4-2x),計算即可得到所求最大值.
解答 解:由0<x<2,可得2-x>0,
則y=x2(2-x)=$\frac{1}{2}$•x•x•(4-2x)
≤$\frac{1}{2}$•($\frac{x+x+4-2x}{3}$)3=$\frac{1}{2}$•$\frac{64}{27}$=$\frac{32}{27}$.
當且僅當x=4-2x,即x=$\frac{4}{3}$時,
取得最大值$\frac{32}{27}$.
點評 本題考查函數(shù)最值的求法,注意運用變形和三元均值不等式,注意滿足的條件:一正二定三等,考查運算能力,屬于基礎題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ②④ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 3.14 | C. | 3.2 | D. | 3.3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,$\sqrt{2}$] | B. | [1,$\sqrt{2}$] | C. | (0,$\sqrt{2}$-1] | D. | [1,$\sqrt{2}$-1] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2014 | B. | 2015 | C. | -2014 | D. | -2015 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
消費金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
人數(shù) | 10 | 25 | 35 | 30 | x |
消費金額 | (0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
人數(shù) | 15 | 30 | 25 | y | 5 |
女士 | 男士 | 總計 | |
網購達人 | |||
非網購達人 | |||
總計 |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com