分析 由an+an+1+an+2=cos$\frac{2nπ}{3}$(n∈N*),可求得a2010+a2011+a2012=a2007+a2008+a2009═…=a3+a4+a5=1,再結(jié)合a1=a2=1,即可求得S2012的值.
解答 解:∵2010=670×3
∴a2010+a2011+a2012=cos(2010×$\frac{2π}{3}$)=cos(670×2π)=cos2π=1,
同理:a2007+a2008+a2009═cos(2007×$\frac{2π}{3}$)=cos2π=1,
…
a3+a4+a5=cos2π=1,
∴S2012=(a2012+a2011+a2010)+(a2009+a2008+a2007)+…+(a5+a4+a3)+a2+a1
=670×1+a2+a1
=670+2
=672.
故答案為:672.
點評 本題考查數(shù)列的求和,求得a2010+a2011+a2012=a2007+a2008+a2009═…=a3+a4+a5=1是關(guān)鍵,考查整體思想與運(yùn)算求解能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1]∪[1,+∞) | B. | (-∞,-1]∪[0,+∞) | C. | [0,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{3π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com