6.?dāng)?shù)列{an}滿足a1=a2=1,an+an+1+an+2=cos$\frac{2nπ}{3}$(n∈N*),若數(shù)列{an}的前n項和為Sn,則S2012的值為3+2$\sqrt{2}$.

分析 由an+an+1+an+2=cos$\frac{2nπ}{3}$(n∈N*),可求得a2010+a2011+a2012=a2007+a2008+a2009═…=a3+a4+a5=1,再結(jié)合a1=a2=1,即可求得S2012的值.

解答 解:∵2010=670×3
∴a2010+a2011+a2012=cos(2010×$\frac{2π}{3}$)=cos(670×2π)=cos2π=1,
同理:a2007+a2008+a2009═cos(2007×$\frac{2π}{3}$)=cos2π=1,

a3+a4+a5=cos2π=1,
∴S2012=(a2012+a2011+a2010)+(a2009+a2008+a2007)+…+(a5+a4+a3)+a2+a1
=670×1+a2+a1
=670+2
=672.
故答案為:672.

點評 本題考查數(shù)列的求和,求得a2010+a2011+a2012=a2007+a2008+a2009═…=a3+a4+a5=1是關(guān)鍵,考查整體思想與運(yùn)算求解能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知頂點在單位圓上的△ABC,角A,B,C所對的邊分別是a,b,c,且2acosA=ccosB+bcosC.
(1)求cosA的值;
(2)若b≥a,求2b-c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.函數(shù)f(x)=lnx在點P(x0,f(x0))處的切線l與函數(shù)g(x)=ex的圖象也相切,則滿足條件的切點P的個數(shù)有2個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.甲、乙兩位數(shù)學(xué)老師組隊參加某電視臺闖關(guān)節(jié)目,共3關(guān),甲作為嘉賓參與答題,若甲回答錯誤,乙作為親友團(tuán)在整個通關(guān)過程中至多只能為甲提供一次幫助機(jī)會,若乙回答正確,則甲繼續(xù)闖關(guān),若某一關(guān)通不過,則收獲前面所有累積獎金.約定每關(guān)通過得到獎金2000元,設(shè)甲每關(guān)通過的概率為$\frac{3}{4}$,乙每關(guān)通過的概率為$\frac{1}{2}$,且各關(guān)是否通過及甲、乙回答正確與否均相互獨立.
(1)求甲、乙獲得2000元獎金的概率;
(2)設(shè)X表示甲、乙兩人獲得的獎金數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}m+{x^2}\;\;,\;\;|x|≥1\\ x\;\;\;,\;\;\;\;|x|<1\end{array}$的圖象過點(1,1),函數(shù)g(x)是二次函數(shù),若函數(shù)f(g(x))的值域是[0,+∞),則函數(shù)g(x)的值域是( 。
A.(-∞,1]∪[1,+∞)B.(-∞,-1]∪[0,+∞)C.[0,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖有4種不同的顏色可供選擇,給圖中的矩形A,B,C,D涂色,要求相鄰的矩形涂色不同,則不同的涂法有72種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知△ABC中,$\frac{c-b}{c-a}$=$\frac{sinA}{sinC+sinB}$,則B=(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知lga、lgb是一元二次方程x2-3x+1=0的兩個根,且1ga>lgb,求$\frac{a}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知動點M到點(8,0)的距離等于M到點(2,0)的距離的2倍.
(1)求動點M的軌跡C的方程;
(2)若直線y=kx-5與軌跡C沒有交點,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案