分析 (1)利用二倍角公式和兩角和公式化簡函數(shù)解析式,由題意可得cos(2x+$\frac{π}{4}$)=-$\frac{1}{2}$,根據(jù)x∈(0,π),利用余弦函數(shù)的性質(zhì)即可得解.
(2)由x∈[0,$\frac{π}{2}$],可得2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],利用余弦函數(shù)的圖象和性質(zhì)可得f(x)的最小值為-$\sqrt{2}$,此時(shí)2x+$\frac{π}{4}$=π,即x=$\frac{3π}{8}$.
解答 解:(1)∵f(x)=cos4x-2sinxcosx-sin4x
=(cos2x+sin2x)(cos2x-sin2x)-sin2x=cos2x-sin2x
=$\sqrt{2}$($\frac{\sqrt{2}}{2}$cos2x-$\frac{\sqrt{2}}{2}$sin2x)
=$\sqrt{2}$cos(2x+$\frac{π}{4}$),
∴f(x)=$\sqrt{2}$cos(2x+$\frac{π}{4}$)=-$\frac{\sqrt{2}}{2}$,可得:cos(2x+$\frac{π}{4}$)=-$\frac{1}{2}$.
∵由題意可得:x∈(0,π),可得:2x+$\frac{π}{4}$∈($\frac{π}{4}$,$\frac{9π}{4}$),可得:2x+$\frac{π}{4}$=$\frac{2π}{3}$或$\frac{4π}{3}$,
∴x=$\frac{5π}{24}$或$\frac{13π}{24}$.
(2)∵x∈[0,$\frac{π}{2}$],2x+$\frac{π}{4}$∈[$\frac{π}{4}$,$\frac{5π}{4}$],
∴cos(2x+$\frac{π}{4}$)∈[-1,$\frac{\sqrt{2}}{2}$],
∴f(x)=$\sqrt{2}$cos(2x+$\frac{π}{4}$)∈[-$\sqrt{2}$,1].
∴f(x)的最小值為-$\sqrt{2}$,此時(shí)2x+$\frac{π}{4}$=π,即x=$\frac{3π}{8}$.
點(diǎn)評(píng) 本題考查三角函數(shù)中的恒等變換應(yīng)用,著重考查二倍角的正弦與余弦與余弦函數(shù)的單調(diào)性與最值,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,-4,2) | B. | (-2,4,-2) | C. | (-2,0,-2) | D. | (2,1,-3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,2) | B. | (-∞,$\frac{1}{2}$)∪(2,+∞) | C. | ($\frac{1}{2}$,1)∪(2,+∞) | D. | (0,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{17}{4}$ | D. | $\frac{15}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{π}{3}$,π) | B. | ($\frac{π}{3}$,π] | C. | [$\frac{π}{3}$,π] | D. | (0,$\frac{π}{3}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com