8.與⊙C1:x2+(y+2)2=25內(nèi)切且與⊙C2:x2+(y-2)2=1外切的動圓圓心M的軌跡方程是(  )
A.$\frac{x^2}{9}$+$\frac{y^2}{5}$=1(y≠0)B.$\frac{y^2}{9}$+$\frac{x^2}{5}$=1(x≠0)C.$\frac{x^2}{9}$+$\frac{y^2}{5}$=1(x≠3)D.$\frac{y^2}{9}$+$\frac{x^2}{5}$=1(y≠3)

分析 由題意,C1(0,-2),C2(0,2),設動圓圓心M的坐標為(x,y),半徑為r,則|MC2|=r+1,|MC1|=5-r,
可得|MC1|+|MC2|=6>|C1C2|=4,利用橢圓的定義,即可求動圓圓心M的軌跡方程.

解答 解:由題意,C1(0,-2),C2(0,2),設動圓圓心M的坐標為(x,y),半徑為r,則|MC2|=r+1,|MC1|=5-r,
∴|MC1|+|MC2|=6>|C1C2|=4,
由橢圓的定義知,點M的軌跡是以C1、C2為焦點的橢圓,且2a=6,c=2,∴a=3,
∴b=$\sqrt{5}$
∴橢圓方程為:$\frac{y^2}{9}$+$\frac{x^2}{5}$=1(y≠3).
故選D.

點評 本題考查圓與圓的位置關系,考查橢圓的定義,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

18.定義$|\begin{array}{l}{a}&\\{c}&weamoys\end{array}|$=ad-bc,則$|{\begin{array}{l}{sin{{50}°}}&{cos{{40}°}}\\{-\sqrt{3}tan{{10}°}}&1\end{array}}|$=( 。
A.2sin10°B.-1C.$\sqrt{3}$D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.如圖,在四面體ABCD中,AB=1,AC=2,AD=3,∠DAB=∠DAC=60°,∠BAC=90°,G為△DBC的重心,則AG=$\frac{\sqrt{23}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.觀察如圖,則第( 。┬械母鲾(shù)之和等于20152
A.2014B.2016C.1007D.1008

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.圖中的三個正方形塊中,著色的正方形的個數(shù)依次構成一個數(shù)列{an},根據(jù)著色的規(guī)律,則a4=585,數(shù)列{an}的通項公式an=$\frac{{8}^{n}-1}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.橢圓C;$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點分別是F1,F(xiàn)2,右頂點為A,上頂點為B,坐標系原點O到直線AB的距離為$\frac{{2\sqrt{21}}}{7}$,橢圓的離心率是$\frac{1}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若經(jīng)過點N(0,t)的直線l與橢圓C交于不同的兩點P,Q,且$\overrightarrow{PN}$=3$\overline{NQ}$,求△AON(點o為坐標系原點)周長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在△ABC中,CB=3,C A=4,|${\overrightarrow{CA}$+$\overrightarrow{CB}}$|=|${\overrightarrow{CA}$-$\overrightarrow{CB}}$|,M是線段AB上的動點(含 A,B兩個端點).若$\overrightarrow{C{M}}$=x$\overrightarrow{C{A}}$+y$\overrightarrow{C{B}}$,(x,y∈R),則|x$\overrightarrow{C{A}}$-y$\overrightarrow{C{B}}}$|的取值范圍是[$\frac{12}{5}$,4].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設m∈R,若函數(shù)y=ex-mx在區(qū)間[1,2]的最小值為4,則m的值為e-4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知△ABC三邊長成公差為2的等差數(shù)列,且最大角的正弦值為$\frac{{\sqrt{3}}}{2}$,則這個三角形的周長是( 。
A.13B.15C.18D.不確定

查看答案和解析>>

同步練習冊答案