17.設(shè)m∈R,若函數(shù)y=ex-mx在區(qū)間[1,2]的最小值為4,則m的值為e-4.

分析 求出函數(shù)的導數(shù),判斷函數(shù)的極小值以及函數(shù)的端點值,利用最小值求解m即可.,

解答 解:函數(shù)y=ex-mx,可得y′=ex-m,x∈[1,2],當m<e時,ex-m>0,函數(shù)y是增函數(shù),最小值為:f(1)=e-m=4,解得m=e-4.滿足題意.
當m>e2時,ex-m<0,函數(shù)y是減函數(shù),最小值為:f(2)=e2-2m=4,解得m=$\frac{1}{2}$(e2-4).不滿足題意.
e≤m≤e2時,令ex-m=0,解得x=lnm,函數(shù)y的最小值為:f(lnm)=m-mlnm=4,方程無解.不滿足題意.
故答案為:e-4.

點評 本題考查函數(shù)的導數(shù)的綜合應(yīng)用,考查分類討論思想以及轉(zhuǎn)化思想的應(yīng)用,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.直線xcosθ+ysinθ+a=0與圓x2+y2=a2交點的個數(shù)是( 。
A.0B.1C.隨a變化D.隨θ變化

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.與⊙C1:x2+(y+2)2=25內(nèi)切且與⊙C2:x2+(y-2)2=1外切的動圓圓心M的軌跡方程是(  )
A.$\frac{x^2}{9}$+$\frac{y^2}{5}$=1(y≠0)B.$\frac{y^2}{9}$+$\frac{x^2}{5}$=1(x≠0)C.$\frac{x^2}{9}$+$\frac{y^2}{5}$=1(x≠3)D.$\frac{y^2}{9}$+$\frac{x^2}{5}$=1(y≠3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知直線l交拋物線y2=3x于A、B兩點,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0(O是坐標原點),設(shè)l交x軸于點F,F(xiàn)′、F分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點.若雙曲線的右支上存在一點P,使得|$\overrightarrow{PF′}$|=2|$\overrightarrow{PF}$|,則a的取值范圍是[1,3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知f(x)=$\left\{\begin{array}{l}{\frac{1}{x},1≤x≤2}\\{{e}^{-x},0≤x≤1}\end{array}\right.$,則${∫}_{0}^{2}$f(x)dx=(  )
A.$\frac{1}{e}$+ln2B.-$\frac{1}{e}$+ln2C.1-$\frac{1}{e}$+ln2D.$\frac{1}{e}$+ln2-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.將邊長為2的正方形ABCD沿對角線BD折起,則三棱錐C-ABD的外接球表面積為( 。
A.B.12πC.16πD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知在平面直角坐標系xOy中,直線l過點P($\sqrt{3}$,0),且傾斜角為$\frac{π}{3}$,以原點O為極點,x軸的正半軸為極軸,建立極坐標系.半徑為4的圓C的圓心的極坐標為(4,$\frac{π}{2}$)
(1)寫出直線l的參數(shù)方程和圓C的極坐標方程;
(2)試判定直線l和圓C的位置關(guān)系.若相交,求相交弦的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.甲、乙兩地準備開通全線長1750km的高鐵.已知運行中高鐵每小時所需的能源費用W(萬元)和速度V(km/h)的立方成正比,當速度為100km/h時,能源費用是每小時0.06萬元,其余費用(與速度無關(guān))是每小時3.24萬元,已知最大速度不超過C(km/h)(C為常數(shù),0<C≤400).
(1)求高鐵運行全程所需的總費用y與列車速度v的函數(shù)關(guān)系;
(2)當高鐵速度為多少時,運行全程所需的總費用最低?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.將函數(shù)y=sin(2x-$\frac{π}{6}}$)的圖象向左平移$\frac{π}{4}$個單位,所得函數(shù)圖象的解析式為y=f(x),則f(0)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步練習冊答案