12.△ABC中,已知:AB=2,BC=1,CA=$\sqrt{3}$,分別在邊AB,BC,CA上取點(diǎn)D,E,F(xiàn),使△DEF是等邊三角形(如圖),設(shè)∠FEC=α,問當(dāng)sinα=$\frac{2\sqrt{7}}{7}$時(shí),△DEF的邊長(zhǎng)最短.

分析 設(shè)等邊△DEF的邊長(zhǎng)為x,顯然∠C=90°,∠B=60°,EC=x•cosα,得到∠EDB=α,在三角形BDE中,利用正弦定理列出關(guān)系式,表示出BE,由BE+EC=BC,列出關(guān)于x的方程,求出方程的解得到x的值,得到三角形的邊長(zhǎng),求出邊長(zhǎng)的最小值,以及此時(shí)sinα的值即可.

解答 解:設(shè)等邊△DEF的邊長(zhǎng)為x,顯然∠C=90°,∠B=60°,EC=x•cosα,
∵∠DEC=∠DEF+α=∠EDB+∠B,∴∠EDB=α.
在△BDE中,由正弦定理得$\frac{x}{sin60°}$=$\frac{BE}{sinα}$,∴BE=$\frac{2\sqrt{3}}{3}•x•sinα$xsinα,
∵BE+EC=BC,∴xcosα+$\frac{2\sqrt{3}}{3}•x•sinα$=1,
∴x=$\frac{1}{cosα+\frac{2\sqrt{3}}{3}•sinα}$=$\frac{\sqrt{3}}{\sqrt{7}•(\sqrt{\frac{3}{7}}•cosα+\frac{2}{\sqrt{7}}sinα)}$=$\frac{\sqrt{3}}{\sqrt{7}•sin(α+θ)}$,
(其中,cosθ=$\frac{2}{\sqrt{7}}$,sinθ=$\sqrt{\frac{3}{7}}$),
當(dāng)α+θ=$\frac{π}{2}$,即α=$\frac{π}{2}$-θ時(shí),xmin=$\frac{\sqrt{21}}{7}$,此時(shí)sinα=cosθ=$\frac{2\sqrt{7}}{7}$,
故答案為:$\frac{{2\sqrt{7}}}{7}$.

點(diǎn)評(píng) 此題考查了正弦定理,正弦函數(shù)的值域,以及兩角和與差的正弦函數(shù)公式,熟練掌握正弦定理是解本題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某人在連續(xù)7天的定點(diǎn)投籃的分?jǐn)?shù)統(tǒng)計(jì)如下:在上述統(tǒng)計(jì)數(shù)據(jù)的分析中,一部分計(jì)算如右圖所示的算法流程圖(其中$\overline{a}$是這7個(gè)數(shù)據(jù)的平均數(shù)),則輸出的S的值是( 。
觀測(cè)次數(shù)i1234567
觀測(cè)數(shù)據(jù)ai5686888
A.1B.$\frac{8}{7}$C.$\frac{9}{7}$D.$\frac{10}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)直線l與平面α平行,直線m在平面α上,那么(  )
A.直線l平行于直線mB.直線l與直線m異面
C.直線l與直線m沒有公共點(diǎn)D.直線l與直線m不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點(diǎn)分別為F1、F2,實(shí)軸的兩個(gè)端點(diǎn)分別為A1、A2,虛軸的兩個(gè)端點(diǎn)分別為B1、B2,若在線段B1F2上,存在兩點(diǎn)M、N(點(diǎn)M、N異于B1、F2),使得∠A1MA2=∠A1NA2=90°,則雙曲線離心率e的取值范圍為$\sqrt{2}$<e<$\frac{\sqrt{5}+1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,O為坐標(biāo)原點(diǎn),以O(shè)F2為直徑的圓交雙曲線于A,B兩點(diǎn),若△F1AB的外接圓過點(diǎn)($\frac{4\sqrt{{a}^{2}+^{2}}}{5}$,0),則該雙曲線的離心率是( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知$\overrightarrow m=({sin({x-\frac{π}{6}}),1}),\overrightarrow n=({cosx,1})$
(1)若$\overrightarrow m∥\overrightarrow n$,求tanx的值;
(2)若函數(shù)$f(x)=\overrightarrow m•\overrightarrow n,x∈[{0,π}]$,求f(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)復(fù)數(shù)z1,z2在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)關(guān)于虛軸對(duì)稱,z1=1+2i,i為虛數(shù)單位.則z1z2=( 。
A.3B.-5C.-5iD.-1-4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知點(diǎn)F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn),點(diǎn)E是該雙曲線的右頂點(diǎn),過點(diǎn)F且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若△ABE是鈍角三角形,則該雙曲線的離心率的取值范圍是( 。
A.(1,$\sqrt{2}$)B.($\sqrt{2}$,+∞)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若二次函數(shù)y=x2+tx+t+3的函數(shù)值恒大于0,則實(shí)數(shù)t的取值范圍是[-2,6].

查看答案和解析>>

同步練習(xí)冊(cè)答案