9.已知f(x)=$\frac{2x}{x+1}$,則f($\frac{1}{2016}}$)+f(${\frac{1}{2015}}$)+…f(${\frac{1}{2}}$)+f(1)+f(2)+…+f(2016)=4031.

分析 求出f(x)+f($\frac{1}{x}$)=2,從而求出答案.

解答 解:f(x)=$\frac{2x}{x+1}$,f($\frac{1}{x}$)=$\frac{\frac{2}{x}}{\frac{1}{x}+1}$=$\frac{2}{x+1}$,
∴f(x)+f($\frac{1}{x}$)=2,
∴f($\frac{1}{2016}}$)+f(${\frac{1}{2015}}$)+…f(${\frac{1}{2}}$)+f(1)+f(2)+…+f(2016)
=[f($\frac{1}{2016}$)+f(2016)]+[f($\frac{1}{2015}$)+f(2015)]+…+[f($\frac{1}{2}$)+f(2)]+f(1)
=2×2015+1=4031,
故答案為:4031.

點(diǎn)評(píng) 本題考查了函數(shù)求值問(wèn)題,得到f(x)+f($\frac{1}{x}$)=2是解題的關(guān)鍵,本題是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.如圖,圓臺(tái)OO1的上底面半徑為6cm,下底面半徑為12cm,高為3$\sqrt{5}$cm.A、B在下底面圓周上,∠AOB=135°,M是母線B1B上一點(diǎn),且BM:MB1=2:1,求圓臺(tái)側(cè)面上A、M兩點(diǎn)間的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知集合A到B的映射f:(x,y)→(2x-2y,14x+2y),那么集合A中元素(1,2)在B中的象是(-2,18),集合B中的元素(1,2)在A中的原象為($\frac{3}{16},-\frac{5}{16}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.函數(shù)y=[cos(x+$\frac{π}{4}$)+sin(x+$\frac{π}{4}$)][cos(x+$\frac{π}{4}$)-sin(x+$\frac{π}{4}$)]在一個(gè)周期內(nèi)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,平面PAD⊥平面ABCD,ABCD是正方形,∠PAD=90°,且PA=AD=2,E、F、G分別是線段PA、PD、CD的中點(diǎn).
(1)求異面直線EG、BD所成角的余弦值.
(2)求三棱椎E-FGC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)=x2+ax+b(a,b∈R)的值域?yàn)閇0,+∞),若關(guān)于x的不等式f(x)<c的解集為(m,m+4),則實(shí)數(shù)c的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.對(duì)具有線性相關(guān)關(guān)系的變量x、y,有一組觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,9),其回歸方程為y=$\frac{1}{10}$x+a,且x1+x2+…+x9=10,y1+y2+…+y9=19,則實(shí)數(shù)a的值是( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.關(guān)于x的不等式x2-ax+a>0恒成立,則實(shí)數(shù)a的取值范圍為( 。
A.(-∞,0)∪(2,+∞)B.(0,2)C.(-∞,0)∪(4,+∞)D.(0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知|$\overrightarrow a}$|=1,|$\overrightarrow b}$|=$\sqrt{3}$,<$\overrightarrow a,\overrightarrow b$>=150°,則|2$\overrightarrow a-\overrightarrow b}$|=$\sqrt{13}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案