17.如圖,圓臺OO1的上底面半徑為6cm,下底面半徑為12cm,高為3$\sqrt{5}$cm.A、B在下底面圓周上,∠AOB=135°,M是母線B1B上一點,且BM:MB1=2:1,求圓臺側(cè)面上A、M兩點間的最短距離.

分析 由題意需先畫出圓臺的側(cè)面展開圖,并還原成圓錐展開的扇形,則所求的最短距離是平面圖形兩點連線,根據(jù)條件求出扇形的圓心角以及半徑長,即可求出最短的距離.

解答 解:由題意,畫出圓臺的側(cè)面展開圖,并還原成圓錐展開的扇形,
圓臺所在圓錐的半徑為2$\sqrt{36+45}$=18,弧AB的長為9π,
∴圓心角為$\frac{π}{2}$,
∵BM:MB1=2:1,
∴O′M=9+3=12,
∴AM=$\sqrt{1{2}^{2}+1{8}^{2}}$=6$\sqrt{13}$.

點評 本題考查了在幾何體表面的最短距離的求出,一般方法是把幾何體的側(cè)面展開后,根據(jù)題意作出最短距離即兩點連線,結(jié)合條件求出,考查了轉(zhuǎn)化思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知數(shù)列{an}的前n項和為Sn,且Sn=2an-2,則an=2n;記Tn=a1+3a2+…+(2n-1)an,則Tn=6+(2n-3)2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.用“五點法”作出下列函數(shù)的圖象:
(1)y=2sin(3x-$\frac{π}{6}$);
(2)y=$\frac{1}{2}$sin($\frac{x}{3}$+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.有一個幾何體的三視圖及其尺寸如圖單位(cm),則該幾何體的表面積及體積為(  )
A.4+4$\sqrt{3}$cm2,$\frac{16\sqrt{3}}{3}$cm3B.4+4$\sqrt{3}$cm2,$\frac{16\sqrt{2}}{3}$cm3C.12cm2,$\frac{16\sqrt{3}}{3}$cm3D.12cm2,$\frac{16\sqrt{2}}{3}$cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.計算:$\underset{lim}{x→0}$$\frac{tanx-sinx}{{x}^{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)f(x)=$\frac{2x-1}{x+3}$的值域是{f(x)|f(x)≠2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.“$\left\{\begin{array}{l}{0<x+y<3}\\{0<xy<2}\end{array}\right.$”是“$\left\{\begin{array}{l}{0<x<1}\\{0<y<2}\end{array}\right.$”的必要不充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.把下面在平面內(nèi)成立的結(jié)論類比地推廣到空間,結(jié)論還正確的是(  )
A.如果一條直線與兩條平行線中的一條相交,則必與另一條相交
B.如果兩條直線同時與第三條直線垂直,則這兩條直線平行
C.如果兩條直線同時與第三條直線相交,則這兩條直線相交
D.如果一條直線與兩條平行線中的一條垂直,則必與另一條垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)=$\frac{2x}{x+1}$,則f($\frac{1}{2016}}$)+f(${\frac{1}{2015}}$)+…f(${\frac{1}{2}}$)+f(1)+f(2)+…+f(2016)=4031.

查看答案和解析>>

同步練習(xí)冊答案