17.設(shè)數(shù)列{an}的前n項和為S${\;}_{{n}_{\;}}$,且a1=1,an+1=3Sn(n=1,2,3,…),則log2S2016=4030.

分析 由已知遞推式可得an=3Sn-1(n≥2),與原式聯(lián)立可得數(shù)列{an}自第二項起,構(gòu)成以3為首項,以4為公比的等比數(shù)列,求出S2016,代入log2S2016得答案.

解答 解:由an+1=3Sn,得an=3Sn-1(n≥2),
兩式作差得:an+1-an=3an,即an+1=4an(n≥2).
由a1=1,an+1=3Sn,得a2=3,
∴$\frac{{a}_{n+1}}{{a}_{n}}=4(n≥2)$,
則數(shù)列{an}自第二項起,構(gòu)成以3為首項,以4為公比的等比數(shù)列,
∴${S}_{2016}=1+\frac{3(1-{4}^{2015})}{1-4}={4}^{2015}$.
∴l(xiāng)og2S2016=$lo{g}_{2}{4}^{2015}=lo{g}_{2}{2}^{4030}=4030$.
故答案為:4030.

點評 本題考查數(shù)列遞推式,考查了等比關(guān)系的確定,訓練了對數(shù)式的運算法則,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

7.若z=1-2i,則復數(shù)$\frac{1}{z}$-|z-1|在復平面上對應的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在數(shù)列{an}中,a1=1,當n≥2時,其前n項和Sn滿足Sn2=an(Sn-1).
(Ⅰ)求證“數(shù)列{$\frac{1}{S_n}$}是等差數(shù)列;
(Ⅱ)設(shè)bn=log2$\frac{S_n}{S_{n+2}}$,數(shù)列{bn}的前n項和為Tn,求滿足Tn≥2+log23的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知P是直線3x+4y+8=0上的動點,PA、PB是圓x2+y2-2x-2y+1=0的切線,A、B是切點,C是圓心,那么四邊形PACB面積取得最小值時,AB的長是$\frac{4\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知直線l在y軸上的截距是-2,傾斜角為135°,則直線l的方程為x+y+2=0(要求寫一般式).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=x|x-a|+b,x∈R:
(1)若a=1,函數(shù)f(x)在[0,+∞)上有三個零點,求實數(shù)b的取值范圍;
(2)若常數(shù)b<0,且對任意x∈[0,1],不等式f(2x)<0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.某校為了解高一新生對文理科的選擇,對1000名高一新生發(fā)放文理科選擇調(diào)查表,統(tǒng)計知,有600名學生選擇理科,400名學生選擇文科.
(1)分別從選擇理科和文科的學生中隨機抽取20名學生的數(shù)學成績?nèi)缦路e累表:
分數(shù)段理科人數(shù)文科人數(shù)
[40,50) 2
[50,60)14
[60,70)34
[70,80)55
[80,90)53
[90,100]42
①從統(tǒng)計表分析,比較選擇文理科學生的數(shù)學平均分及學生選擇文理科的情況,并繪制理科數(shù)學成績的頻率分布直方圖:

②根據(jù)繪制的頻率分布直方圖,估計意向選擇理科的學生的數(shù)學成績的中位數(shù)與平均分;
(2)現(xiàn)用分層抽樣從高一新生中抽取5名學生,再從這5名學生中任抽取兩名學生,求至少有一名學生選擇文科的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設(shè)實數(shù)x1,x2,…,x100滿足:|x1|=9,|x${\;}_{{n}_{\;}}$|=|xn-1+1|,n=2,3,4,…,100,則x1+x2+…+x100的最小值是-90.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.(1)無論K為何值時,直線(k+2)x+(1-k)y-4k-5=0都恒過定點P.求P點的坐標.
(2)證明:直線(k+2)x+(1-k)y-4k-5=0恒過第四象限.

查看答案和解析>>

同步練習冊答案