8.在數(shù)列{an}中,a1=1,當n≥2時,其前n項和Sn滿足Sn2=an(Sn-1).
(Ⅰ)求證“數(shù)列{$\frac{1}{S_n}$}是等差數(shù)列;
(Ⅱ)設(shè)bn=log2$\frac{S_n}{S_{n+2}}$,數(shù)列{bn}的前n項和為Tn,求滿足Tn≥2+log23的最小正整數(shù)n.

分析 (Ⅰ)把an=Sn-Sn-1代入題設(shè)遞推式整理求得$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=1,進而利用等差數(shù)列的定義推斷出數(shù)列{$\frac{1}{{S}_{n}}$}是等差數(shù)列
(Ⅱ)依據(jù)(Ⅰ)可求得數(shù)列$\frac{1}{{S}_{n}}$的通項公式,代入bn中求得其表達式,進而利用對數(shù)運算的法則求得Tn,根據(jù)Tn≥2+log23利用對數(shù)函數(shù)的單調(diào)性求得n的范圍,進而求得最小正整數(shù)n.

解答 解:(Ⅰ)證明:∵Sn2=an(Sn-1)∴Sn2=(Sn-Sn-1)(Sn-1)(n≥2)
∴SnSn-1=Sn-1-Sn,即$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=1,
∴數(shù)列{$\frac{1}{{S}_{n}}$}是1為首項,1為公差的等差數(shù)列,
(Ⅱ)由(Ⅰ)知Sn=$\frac{1}{n}$,
∴bn=log2$\frac{S_n}{S_{n+2}}$=log2$\frac{n+2}{n}$,
∴Tn=log2($\frac{3}{1}×\frac{4}{2}×\frac{5}{3}$×…×$\frac{n+2}{n}$)=log2$\frac{(n+1)(n+2)}{2}$,
∵Tn≥2+log23,
∴l(xiāng)og2$\frac{(n+1)(n+2)}{2}$≥2+log23=log212
則(n+1)(n+2)≥24,解得n≥4,
∴滿足Tn≥2+log23的最小正整數(shù)為4.

點評 本題主要考查了數(shù)列的遞推式,等差關(guān)系的確定,數(shù)列的通項公式和求和公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.已知數(shù)列{an}滿足an+1=2an+3×5n,a1=6,則數(shù)列{an}的通項公式為an=2n-1+5n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知直線ax+y+2=0與直線x-(3a-1)y-1=0互相垂直,則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)y=$\sqrt{1-lo{g}_{3}x}$-$\frac{1}{\sqrt{2cos2x-1}}$的定義域是(0,$\frac{π}{6}$)∪($\frac{5π}{6}$,3](用區(qū)間表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若a,b,c成等比數(shù)列,且c=2a,則cosB等于(  )
A.$\frac{1}{4}$B.$\frac{\sqrt{2}}{4}$C.$\frac{3}{4}$D.$\frac{\sqrt{2}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知函數(shù)f(x)=$\frac{x+1}{{e}^{x}}$+alnx有極值點,其中e為自然對數(shù)的底數(shù).
(1)求a的取值范圍;
(2)若a∈(0,$\frac{1}{e}$],求證:?x∈(0,2],都有f(x)<$\frac{1+a-{a}^{2}}{{e}^{a}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角是$\frac{2π}{3}$,|$\overrightarrow{a}$|=3,|$\overrightarrow$|=1,則|$\overrightarrow{a}$-5$\overrightarrow$|=7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設(shè)數(shù)列{an}的前n項和為S${\;}_{{n}_{\;}}$,且a1=1,an+1=3Sn(n=1,2,3,…),則log2S2016=4030.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知a,b∈R,則“0≤a≤1且0≤b≤1”是“0≤ab≤1”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習冊答案