A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |
分析 利用三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)已知等式可得cosBsinC=-3sinBcosC,根據(jù)正弦定理,余弦定理化簡(jiǎn)整理可得:2a2+b2=c2,結(jié)合已知$\sqrt{3}$b=c,解得a=b,可得A為銳角,進(jìn)而利用余弦定理可求cosA的值,利用同角三角函數(shù)基本關(guān)系式可求sinA,tanA的值.
解答 解:∵sinA+2sinBcosC=sin(B+C)+2sinBcosC=sinBcosC+cosBsinC+2sinBcosC=0,
∴cosBsinC=-3sinBcosC,
∴ccosB=-3bcosC,可得:c•$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=(-3)b•$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,整理可得:2a2+b2=c2,
又∵$\sqrt{3}$b=c,
∴2a2+b2=c2=3b2,解得a=b,可得A為銳角,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{^{2}+3^{2}-^{2}}{2b×\sqrt{3}b}$=$\frac{\sqrt{3}}{2}$,可得:sinA=$\frac{1}{2}$,tanA=$\frac{\sqrt{3}}{3}$.
故選:A.
點(diǎn)評(píng) 本題主要考查了三角函數(shù)恒等變換的應(yīng)用,正弦定理,余弦定理,同角三角函數(shù)基本關(guān)系式在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 86 | B. | 87 | C. | 87.5 | D. | 88.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$+$\sqrt{2}$i | B. | $\frac{{\sqrt{2}}}{2}$+$\frac{{\sqrt{2}}}{2}$i | C. | 1-i | D. | 1+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B⊆A | B. | A∩B=∅ | C. | A∩B={0,1} | D. | A∩B={-2,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | n-1(n∈N+) | B. | 2n-1(n∈N+) | C. | n(n∈N+) | D. | 3n-3(n∈N+) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{2\sqrt{14}}}{9}$ | B. | $\frac{{\sqrt{14}}}{9}$ | C. | $\frac{{\sqrt{11}}}{5}$ | D. | $\frac{{2\sqrt{11}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | cosx•sinx | B. | cos2x+sin2x | C. | 2cosx•sinx | D. | cos2x-sin2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(1)+f(3)<2f(2) | B. | f(1)+f(3)≤2f(2) | C. | f(1)+f(3)>2f(2) | D. | f(1)+f(3)≥2f(2) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com