A. | $\frac{63}{32}$ | B. | $\frac{31}{16}$ | C. | $\frac{123}{64}$ | D. | $\frac{127}{128}$ |
分析 利用數(shù)列遞推關(guān)系:n=1時,a1=2a1-1,解得a1;n≥2時,an=Sn-Sn-1.再利用等比數(shù)列的通項公式與求和公式即可得出.
解答 解:∵Sn=2an-1,∴n=1時,a1=2a1-1,解得a1=1;n≥2時,an=Sn-Sn-1=2an-1-(2an-1-1),
化為:an=2an-1.
∴數(shù)列{an}是等比數(shù)列,公比為2.
∴a6=25=32,S6=$\frac{{2}^{6}-1}{2-1}$=63.
則$\frac{S_6}{a_6}$=$\frac{63}{32}$.
故選:A.
點評 本題考查了數(shù)列遞推關(guān)系、等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12$\sqrt{2}$ | B. | 9+$\sqrt{2}$ | C. | 9$\sqrt{2}$ | D. | 8+$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{4}$,+∞) | B. | (-∞,0]∪($\frac{1}{4}$,+∞) | C. | (-∞,0]∪[$\frac{1}{4}$,+∞) | D. | [$\frac{1}{4}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com