若過(guò)點(diǎn)P(1,1)且互相垂直的兩條直線l1,l2分別與x軸,y軸交于A,B兩點(diǎn),則AB中點(diǎn)M的軌跡方程為_(kāi)_______.

 

x+y-1=0

【解析】設(shè)直線l1的方程是y-1=k(x-1),則直線l2的方程是y-1=- (x-1),所以直線l1與x軸的交點(diǎn)為A(1-,0),l2與y軸的交點(diǎn)為B(0,1+),設(shè)AB的中點(diǎn)為M(x,y),則有,兩式相加消去k得x+y=1,

即x+y-1=0,所以AB中點(diǎn)M的軌跡方程為x+y-1=0.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):選4-1-1相似三角形判定及性質(zhì)(解析版) 題型:解答題

如圖,△ABC中,AB=AC,AD是中線,P為AD上一點(diǎn),CF∥AB,BP延長(zhǎng)線交AC、CF于E、F,求證:PB2=PE·PF.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):9-1隨機(jī)抽樣(解析版) 題型:解答題

某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查.

(1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;

(2)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,

①列出所有可能的抽取結(jié)果;

②求抽取的2所學(xué)校均為小學(xué)的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-9圓錐曲線的綜合問(wèn)題(解析版) 題型:解答題

已知△ABC的周長(zhǎng)為12,頂點(diǎn)A,B的坐標(biāo)分別為(-2,0),(2,0),C為動(dòng)點(diǎn).

(1)求動(dòng)點(diǎn)C的軌跡E的方程;

(2)過(guò)原點(diǎn)作兩條關(guān)于y軸對(duì)稱的直線(不與坐標(biāo)軸重合),使它們分別與曲線E交于兩點(diǎn),求四點(diǎn)所對(duì)應(yīng)的四邊形的面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-9圓錐曲線的綜合問(wèn)題(解析版) 題型:選擇題

設(shè)拋物線x2=4y與橢圓=1交于點(diǎn)E,F(xiàn),則△OEF(O為坐標(biāo)原點(diǎn))的面積為(  )

A.3 B.4 C.6 D.12

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-8曲線與方程(解析版) 題型:填空題

曲線C是平面內(nèi)與兩個(gè)定點(diǎn)F1(-1,0)和F2(1,0)的距離的積等于常數(shù)a2(a>1)的點(diǎn)的軌跡.給出下列三個(gè)結(jié)論:

①曲線C過(guò)坐標(biāo)原點(diǎn);

②曲線C關(guān)于坐標(biāo)原點(diǎn)對(duì)稱;

③若點(diǎn)P在曲線C上,則△F1PF2的面積不大于a2.

其中,所有正確結(jié)論的序號(hào)是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-8曲線與方程(解析版) 題型:選擇題

長(zhǎng)為3的線段AB的端點(diǎn)A、B分別在x軸、y軸上移動(dòng),=2,則點(diǎn)C的軌跡是(  )

A.線段 B.圓 C.橢圓 D.雙曲線

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-6雙曲線(解析版) 題型:解答題

已知中心在原點(diǎn)的雙曲線C的右焦點(diǎn)為(2,0),右頂點(diǎn)為(,0).

(1)求雙曲線C的方程;

(2)若直線l:y=kx+與雙曲線C恒有兩個(gè)不同的交點(diǎn)A和B,且·>2(其中O為原點(diǎn)),求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:選擇題

已知圓C:x2+(y-3)2=4,過(guò)A(-1,0)的直線l與圓C相交于P,Q兩點(diǎn),若|PQ|=2,則直線l的方程為(  )

A.x=-1或4x+3y-4=0

B.x=-1或4x-3y+4=0

C.x=1或4x-3y+4=0

D.x=1或4x+3y-4=0

 

查看答案和解析>>

同步練習(xí)冊(cè)答案