精英家教網 > 高中數學 > 題目詳情

【題目】已知公差不為零的等差數列{an}中, S2=16,且成等比數列.

(1)求數列{an}的通項公式;

(2)求數列{|an|}的前n項和Tn.

【答案】(1)an=11-2n(n∈N*).(2)見解析

【解析】

(1)S2=16,成等比數列,解得首項和公差進而得到通項;(2)n≤5時,Tna1a2+…+an, 直接按照等差數列求和公式求和即可, n≥6,Tna1a2+…+a5a6a7- …-an =n2-10n+50,寫成分段即可.

(1)S2=16,成等比數列,得解得

所以等差數列{an}的通項公式為an=11-2n(nN*).

(2)n≤5時,Tn=|a1|+|a2|+…+|an|=a1a2+…+anSn=-n2+10n.

n≥6時,Tn=|a1|+|a2|+…+|an|=a1a2+…+a5a6a7- …-an=2S5Sn=2×(-52+10×5)-(-n2+10n)=n2-10n+50,

Tn

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,兩個正方形ABCDADEF所在平面互相垂直,設MN分別是BDAE的中點,那么;CDE;;MN,CE異面其中正確結論的序號是______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)當時,求曲線在點處的切線方程;

(2)若函數有兩個極值點,且.

①求的取值范圍;

②求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一臺機器按不同的轉速生產出來的某機械零件有一些會有缺點,每小時生產有缺點零件的多少,隨機器的運轉的速度而變化,具有線性相關關系,下表為抽樣試驗的結果:

轉速(轉/秒)

8

10

12

14

16

每小時生產有缺點的零件數(件)

5

7

8

9

11

(1)如果有線性相關關系,求回歸方程;

(2)若實際生產中,允許每小時生產的產品中有缺點的零件最多有1個,那么機器的運轉速度應控制在什么范圍內?參考公式:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=
(1)令N(x)=(1+x)2﹣1+ln(1+x),判斷并證明N(x)在(﹣1,+∞)上的單調性,并求N(0);
(2)求f(x)在定義域上的最小值;
(3)是否存在實數m,n滿足0≤m<n,使得f(x)在區(qū)間[m,n]上的值域也為[m,n]? (參考公式:[ln(1+x)′]=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在亞丁灣海域執(zhí)行護航任務的中國海軍“徐州”艦,在A處收到某商船在航行中發(fā)出求救信號后,立即測出該商船在方位角方位角(是從某點的指北方向線起,依順時針方向到目標方向線之間的水平夾角)為45°、距離A處為10 n mile的C處,并測得該船正沿方位角為105°的方向,以9 n mile/h的速度航行,“徐州”艦立即以21 n mile/h的速度航行前去營救.

(1)“徐州”艦最少需要多少時間才能靠近商船?

(2)在營救時間最少的前提下,“徐州”艦應按照怎樣的航行方向前進?(角度精確到0.1°,時間精確到1min,參考數據:sin68.2°≈0.9286)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:,直線

(1)若直線被圓C截得的弦長為 ,求實數的值;

(2)當t =1時,由直線上的動點P引圓C的兩條切線,若切點分別為A,B,則直線AB是否恒過一個定點?若存在,求出該定點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為了分析本校高中生的性別與是否喜歡數學之間的關系,在高中生中隨機地抽取了90名學生調查,得到了如下列聯(lián)表:

喜歡數學

不喜歡數學

總計

30

45

25

45

總計

90

(1)求①②③④處分別對應的值;

(2)能有多大把握認為“高中生的性別與喜歡數學”有關?

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,在△ABC中,AB的中點為O,且OA=1,點D在AB的延長線上,且 .固定邊AB,在平面內移動頂點C,使得圓M與邊BC,邊AC的延長線相切,并始終與AB的延長線相切于點D,記頂點C的軌跡為曲線Γ.以AB所在直線為x軸,O為坐標原點如圖所示建立平面直角坐標系.
(Ⅰ)求曲線Γ的方程;
(Ⅱ)設動直線l交曲線Γ于E、F兩點,且以EF為直徑的圓經過點O,求△OEF面積的取值范圍.

查看答案和解析>>

同步練習冊答案