9.若X~N(μ,σ2),a為一個實數(shù),證明P(X=a)=0.

分析 由分布函數(shù)定義,利用反證法,即可證明.

解答 證明:首先,P(X=a)≥0,
假設(shè)P(X=a)>0,記P(X=a)=c,記X的分布函數(shù)為F(x),
則由分布函數(shù)定義,F(xiàn)(a+0)-F(a-0)=c>0,由此知a是F(x)的間斷點,這與F(x)在R上連續(xù)矛盾.
因此假設(shè)不成立,P(X=a)=0.

點評 本題考查分布函數(shù)定義,考查反證法,比較基礎(chǔ).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知數(shù)列{an}的前n項和為Sn,且2Sn=3an-1.
(1)求數(shù)列{an]的通項an
(2)數(shù)列{bn}滿足b1=1,bn+1=an+bn,記cn=$\frac{{a}_{n}}{({a}_{n+1}+1)•_{n}}$,求{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.求圓心為(-3,2),且與直線3x-4y-3=0相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,D在線段BC上,△ABD是正三角形,且線段CD,AD,AC的長成等差數(shù)列.
(I)求△ABC最大內(nèi)角的余弦值;
(Ⅱ)若△ACD的內(nèi)切圓面積為3π,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.求函數(shù)y=$\sqrt{\frac{π}{3}-2arctan(2-x)}$的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知正項數(shù)列{an}的前n項和為Sn,且點(an,sn)在拋物線y=λx2上.
(1)求證:數(shù)列{an}為單調(diào)遞增數(shù)列;
(2)若λ=1,證明:Sn≥$(\frac{n+1}{2})^{2}$:
(3)是否存在實數(shù)λ,使數(shù)列{an}為等差數(shù)列?若存在,求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知數(shù)列{an}中各項都不為零,且a1=1,an+1=$\frac{{a}_{n}}{3+2{a}_{n}}$
(1)證明:數(shù)列{$\frac{1}{{a}_{n}}$+1}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)求證:$\frac{{a}_{1}}{{a}_{1}+1}$+$\frac{{a}_{2}}{{a}_{2}+1}$+$\frac{{a}_{3}}{{a}_{3}+1}$+…+$\frac{{a}_{n}}{{a}_{n}+1}$<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.將函敬y=sin2x的圖象向右平移$\frac{π}{4}$個單位長度,所得圖象對應(yīng)的函數(shù)解析式是(  )
A.y=cos2xB.y=-cos2xC.y=sin(2x-$\frac{π}{4}$)D.y=-sin2x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖,正四棱錐P-ABCD的底面一邊AB長為$2\sqrt{3}cm$,側(cè)面積為$8\sqrt{3}c{m^2}$,則它的體積為4.

查看答案和解析>>

同步練習冊答案