分析 聯(lián)立$\left\{\begin{array}{l}{y=\frac{1}{2}x}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,解得A(2,1),B(-2,-1).①當CA,CB,DA,DB斜率都存在時,設直線CA,DA的斜率分別為k1,k2,C(x0,y0),顯然k1≠k2;可得:k1•kCB=-$\frac{1}{2}$,kCB=-$\frac{1}{2{k}_{1}}$;同理kDB=-$\frac{1}{2{k}_{2}}$,于是直線AD的方程為y-1=k2(x-2),直線BC的方程為y+1=-$\frac{1}{2{k}_{1}}$(x+2);聯(lián)立解得:點N的坐標為$(\frac{4{k}_{1}{k}_{2}-4{k}_{1}-2}{2{k}_{1}{k}_{2}+1},\frac{-2{k}_{1}{k}_{2}-4{k}_{2}+1}{2{k}_{1}{k}_{2}+1})$;用k2代k1,k1代k2得點M的坐標.可得kMN=$\frac{4({k}_{2}-{k}_{1})}{4({k}_{1}-{k}_{2})}$=-1;即直線MN的斜率為定值-1;②當CA,CB,DA,DB中,有直線的斜率不存在時,根據(jù)題設要求,至多有一條直線斜率不存在,故不妨設直線CA的斜率不存在,從而C(2,-1);仍然設DA的斜率為k2,由①知kDB=-$\frac{1}{2{k}_{2}}$;即可得出.
解答 證明:聯(lián)立$\left\{\begin{array}{l}{y=\frac{1}{2}x}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$,或$\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$,從而A(2,1),B(-2,-1);
①當CA,CB,DA,DB斜率都存在時,設直線CA,DA的斜率分別為k1,k2,C(x0,y0),
顯然k1≠k2;
從而k1•kCB=$\frac{{y}_{0}-1}{{x}_{0}-2}$•$\frac{{y}_{0}+1}{{x}_{0}+2}$=$\frac{{y}_{0}^{2}-1}{{x}_{0}^{2}-4}$=$\frac{3(1-\frac{{x}_{0}^{2}}{6})-1}{{x}_{0}^{2}-4}$=-$\frac{1}{2}$,
∴kCB=-$\frac{1}{2{k}_{1}}$;
同理kDB=-$\frac{1}{2{k}_{2}}$,
于是直線AD的方程為y-1=k2(x-2),直線BC的方程為y+1=-$\frac{1}{2{k}_{1}}$(x+2);
由$\left\{\begin{array}{l}{y+1=-\frac{1}{2{k}_{1}}(x+2)}\\{y-1={k}_{2}(x-2)}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{4{k}_{1}{k}_{2}-4{k}_{1}-2}{2{k}_{1}{k}_{2}+1}}\\{y=\frac{-2{k}_{1}{k}_{2}-4{k}_{2}+1}{2{k}_{1}{k}_{2}+1}}\end{array}\right.$,從而點N的坐標為$(\frac{4{k}_{1}{k}_{2}-4{k}_{1}-2}{2{k}_{1}{k}_{2}+1},\frac{-2{k}_{1}{k}_{2}-4{k}_{2}+1}{2{k}_{1}{k}_{2}+1})$;
用k2代k1,k1代k2得點M的坐標為$(\frac{4{k}_{1}{k}_{2}-4{k}_{2}-2}{2{k}_{1}{k}_{2}+1},\frac{-2{k}_{1}{k}_{2}-4{k}_{1}+1}{2{k}_{1}{k}_{2}+1})$.
∴kMN=$\frac{\frac{-2{k}_{1}{k}_{2}-4{k}_{1}+1}{2{k}_{1}{k}_{2}+1}-\frac{-2{k}_{1}{k}_{2}-4{k}_{2}+1}{2{k}_{1}{k}_{2}+1}}{\frac{4{k}_{1}{k}_{2}-4{k}_{2}-2}{2{k}_{1}{k}_{2}+1}-\frac{4{k}_{1}{k}_{2}-4{k}_{1}-2}{2{k}_{1}{k}_{2}+1}}$=$\frac{4({k}_{2}-{k}_{1})}{4({k}_{1}-{k}_{2})}$=-1;
即直線MN的斜率為定值-1;
②當CA,CB,DA,DB中,有直線的斜率不存在時,
根據(jù)題設要求,至多有一條直線斜率不存在,
故不妨設直線CA的斜率不存在,從而C(2,-1);
仍然設DA的斜率為k2,由①知kDB=-$\frac{1}{2{k}_{2}}$;
此時CA:x=2,DB:y+1=-$\frac{1}{2{k}_{2}}$(x+2),它們交點M(2,-1-$\frac{2}{{k}_{2}}$);
BC:y=-1,AD:y-1=k2(x-2),它們交點N(2-$\frac{2}{{k}_{2}}$,-1),
從而kMN=-1也成立.
綜上可得:kMN=-1為定值.
點評 本題考查了橢圓的標準方程及其性質、直線與橢圓相交問題、斜率計算公式,考查了分類討論方法、推理能力與計算能力,屬于難題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com