已知f(x)=logax(a>0且a≠1),如果對于任意的x∈[,2]都有|f(x)|≤1
成立,試求a的取值范圍
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).(e是自然對數(shù)的底數(shù))
(1)判斷在上是否是單調(diào)函數(shù),并寫出在該區(qū)間上的最小值;
(2)證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)已知函數(shù),在點處的切線方程是(e為自然對數(shù)的底)。
(1)求實數(shù)的值及的解析式;
(2)若是正數(shù),設(shè),求的最小值;
(3)若關(guān)于x的不等式對一切恒成立,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)在點處的切線方程為.
(I)求的表達式;
(Ⅱ)若滿足恒成立,則稱是的一個“上界函數(shù)”,如果函數(shù)為(R)的一個“上界函數(shù)”,求t的取值范圍;
(Ⅲ)當時,討論在區(qū)間(0,2)上極值點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品的月生產(chǎn)量(噸)與每噸產(chǎn)品的價格p(元/噸)之間的關(guān)系式為:p=24200-0.2x2,且生產(chǎn)x噸的成本為(元).問該廠每月生產(chǎn)多少噸產(chǎn)品才能使利潤達到最大?最大利潤是多少?(注:利潤=收入─成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分16分)已知定義在上的函數(shù),其中為常數(shù).
(1)若是函數(shù)的一個極值點,求的值;
(2)若函數(shù)在區(qū)間上是增函數(shù),求的取值范圍;
(3)若函數(shù),在處取得最大值,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知函數(shù)在(0,1)內(nèi)是增函數(shù).
(1)求實數(shù)的取值范圍;
(2)若,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)設(shè)函數(shù)f(x)=x3+ax2-a2x+m(a>0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在x∈[-1,1]內(nèi)沒有極值點,求a的取值范圍;
(Ⅲ)若對任意的a∈[3,6],不等式f(x)≤1在x∈[-2,2]上恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)已知函數(shù).
(I)若函數(shù)在點處的切線斜率為4,求實數(shù)的值;
(II)若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com