【題目】如圖所示,有一塊半徑長為1米的半圓形鋼板,現(xiàn)要從中截取一個內(nèi)接等腰 梯形部件ABCD,設(shè)梯形部件ABCD的面積為平方米.
(1)按下列要求寫出函數(shù)關(guān)系式:
①設(shè)(米),將
表示成
的函數(shù)關(guān)系式;
②設(shè),將
表示成
的函數(shù)關(guān)系式.
(2)求梯形部件ABCD面積的最大值.
【答案】(1)①,②
;(2)
.
【解析】
試題分析:(1)①梯形上底和下底確定,故需表示梯形高即可.過點C作于E,則在
中,
,故梯形面積為
;②思路與第一問相同,不同的是變量的選取差異,在
中,
,則梯形上、下底分別為
和2,高為
,故梯形面積為
;(2)以
為例,函數(shù)解析式變形為
,利用導(dǎo)數(shù)求被開方數(shù)的最大值即可.
試題解析:如圖所示,以直徑所在的直線為
軸,線段
中垂線為
軸,建立平面直角坐標系,過點C作
于E,
(1)①∵,∴
,
∴
4分
②∵,∴
,
∴, 8分
(說明:若函數(shù)的定義域漏寫或錯誤,則一個扣1分)
(2)(方法1)∴,
令,
則, 10分
令,
,
(舍). 12分
∴當時,
,∴函數(shù)在(0,
)上單調(diào)遞增,
當時,
,∴函數(shù)在(
,1)上單調(diào)遞減, 14分
所以當時,
有最大值
,
16分
答:梯形部件面積的最大值為
平方米.
(方法2) ∴
, 10分
令,得
,即
,
(舍), 12分
∴當時,
,∴函數(shù)在
上單調(diào)遞增,
當時,
,∴函數(shù)在
上單調(diào)遞減 , 14分
所以當時,
16分
答:梯形部件ABCD面積的最大值為平方米.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,
.
(Ⅰ)當 時,
恒成立,求
的取值范圍;
(Ⅱ)當 時,研究函數(shù)
的零點個數(shù);
(Ⅲ)求證: (參考數(shù)據(jù):
).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某科研小組研究發(fā)現(xiàn):一棵水果樹的產(chǎn)量(單位:百千克)與肥料費用(單位:百元)滿足如下關(guān)系:
.此外,還需要投入其它成本(如施肥的人工費等)
百元.已知這種水果的市場售價為16元/千克(即16百元/百千克),且市場需求始終供不應(yīng)求.記該棵水果樹獲得的利潤為
(單位:百元).
(1)求的函數(shù)關(guān)系式;
當投入的肥料費用為多少時,該水果樹獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點,焦點在x軸上的橢圓的一個頂點坐標為(0,1),其離心率為
(1)求橢圓的標準方程;
(2)橢圓上一點P滿足∠F1PF2=60°,其中F1 , F2為橢圓的左右焦點,求△F1PF2的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)和g(x)的圖象關(guān)于原點對稱,且f(x)=x2+2x.
(1)求函數(shù)g(x)的解析式;
(2)解不等式g(x)≥f(x)-|x-1|;
(3)若h(x)=g(x)-λf(x)+1在[-1,1]上是增函數(shù),求實數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2016年3月9日至15日,谷歌人工智能系統(tǒng)“阿爾法”迎戰(zhàn)圍棋冠軍李世石,最終結(jié)果“阿爾法”以總比分4比1戰(zhàn)勝李世石.許多人認為這場比賽是人類的勝利,也有許多人持反對意見,有網(wǎng)友為此進行了調(diào)查,在參加調(diào)查的2548名男性中有1560名持反對意見,2452名女性中有1200名持反對意見,在運用這些數(shù)據(jù)說明“性別”對判斷“人機大戰(zhàn)是人類的勝利”是否有關(guān)系時,應(yīng)采用的統(tǒng)計方法是( )
A.莖葉圖
B.分層抽樣
C.獨立性檢驗
D.回歸直線方程
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0,其中m<5.
(1)若圓C與直線l:x+2y﹣4=0相交于M,N兩點,且|MN|= ,求m的值;
(2)在(1)條件下,是否存在直線l:x﹣2y+c=0,使得圓上有四點到直線l的距離為 ,若存在,求出c的范圍,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com