6.某幾何體的三視圖如圖所示,這個幾何體的表面積為( 。
A.18+2$\sqrt{3}$B.12+3$\sqrt{3}$C.12+2$\sqrt{3}$D.11$\sqrt{3}$

分析 由已知中的三視圖,可知該幾何體是平放的三棱柱,求各個面的表面積,即可得到該幾何體的表面積.

解答 解:由已知中的三視圖,可知該幾何體是平放的三棱柱,
底面為等邊三角形,其兩個底面的面積為:$\frac{1}{2}×2×\sqrt{3}×2$=2$\sqrt{3}$.
側面為3個相等的矩形.其三個的面積為:3×2×3=18.
∴該幾何體的表面積為18+2$\sqrt{3}$.
故選A.

點評 本題考查了三視圖的投影認識和理解能力.空間想象思維的能力.屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是( 。
A.y=exB.y=sinxC.y=cosxD.y=lnx2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)f(x)=$\sqrt{1-x}$+$\frac{1}{x+1}$的定義域為(-∞,-1)∪(-1,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.把2016(8)化成二進制為( 。
A.10000001110(2)B.10000011110(2)C.100000011101(2)D.10000001100(2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)y=log${\;}_{\frac{1}{2}}}$(sinxcosx)的遞減區(qū)間是( 。
A.$(kπ,kπ+\frac{π}{4})$B.$(2kπ,2kπ+\frac{π}{2})$C.$[kπ+\frac{π}{4},kπ+\frac{π}{2})$D.以上都不對.(k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知圓O:x2+y2=25和圓C:x2+y2-4x-2y-20=0相交于A、B兩點,求公共弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知$\frac{4sinθ-2cosθ}{3sinθ+5cosθ}$=$\frac{6}{11}$,求下列各式的值.
(1)tanθ;
(2)$\frac{5cos{\;}^{2}θ}{sin2θ+2sinθcosθ-3cos{\;}^{2}θ}$;
(3)1-4sin θcos θ+2cos2θ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=sinωx+cosωx(ω>0),x∈R,若函數(shù)f(x)在區(qū)間$({-\frac{ω}{4},\frac{ω}{4}})$內(nèi)單調(diào)遞增,且函數(shù)f(x)的圖象關于直線$x=\frac{ω}{4}$對稱,則ω的值$\sqrt{π}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知$\frac{π}{2}<θ<π$,$sinθ=\frac{4}{5}$,則tan(π-θ)的值為( 。
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

同步練習冊答案