A. | 5 | B. | 4+2$\sqrt{3}$ | C. | 4+2$\sqrt{2}$ | D. | 6 |
分析 由題意:過圓內(nèi)一點(diǎn)的最長的弦長是直徑,最短弦長是與過該點(diǎn)的直徑垂直的直線截得的弦.利用弦長公式可求解.
解答 解:由題意:圓C:$x_{\;}^2+y_{\;}^2=4$,其圓心C為(0,0),半徑r=2,A(1,1),則過A點(diǎn)和圓心的直線的斜率為KAC=1,
那么截得的弦最短的直線方程為:x+y-2=0.
則圓心到直線的距離d=$\sqrt{2}$
根據(jù)弦長公式l=2$\sqrt{{r}^{2}-bdnvdxz^{2}}$=2$\sqrt{2}$.
所以最短的弦長與最長的弦長之和為:4+2$\sqrt{2}$.
故選C.
點(diǎn)評 本題考查了圓與直線的位置關(guān)系之弦長的問題.屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[2kπ-\frac{π}{3},2kπ+\frac{π}{6}]$k∈Z | B. | $[kπ+\frac{π}{6},kπ+\frac{2π}{3}]$k∈Z | ||
C. | $[kπ-\frac{π}{3},kπ+\frac{π}{6}]$k∈Z | D. | $[2kπ+\frac{π}{6},2kπ+\frac{2π}{3}]$k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-2)2+(y+3)2=36 | B. | (x-2)2+(y+3)2=25 | C. | (x-2)2+(y+3)2=18 | D. | (x-2)2+(y+3)2=9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | [1,+∞) | C. | (0,1] | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,+∞) | B. | (-∞,-1) | C. | (-1,$\frac{1}{2}$) | D. | (-∞,-1)∪($\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com