分析 (1)利用等差數(shù)列的通項(xiàng)公式即可得出.
(2)利用等差數(shù)列的求和公式即可得出.
(3)利用“裂項(xiàng)求和方法”、數(shù)列的單調(diào)性即可得出.
解答 (1)解:設(shè)等差數(shù)列{an}的公差為d,∵a4=9,a6+a7=28.
∴a1+3d=9,2a1+11d=28,解得a1=3,d=2.
∴an=3+2(n-1)=2n+1.
(2)解:Sn=$\frac{n(3+2n+1)}{2}$=n2+2n.
(3)證明:bn=$\frac{1}{{a}_{n}^{2}-1}$=$\frac{1}{(2n+1)^{2}-1}$=$\frac{1}{4n(n+1)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,
∴數(shù)列{bn}的前n項(xiàng)和為Tn=$\frac{1}{4}$$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$
=$\frac{1}{4}$$(1-\frac{1}{n+1})$<$\frac{1}{4}$.
點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、數(shù)列的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{4}π$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{2}}{2}$ | B. | 1 | C. | 2 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=$\frac{1}{x}$ | B. | f(x)=($\frac{1}{3}$)|x| | C. | f(x)=sinx-x | D. | f(x)=$\frac{lnx}{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com