14.已知直二面角α-l-β,點(diǎn)A∈α,AC⊥l,C為垂足,B∈β,BD⊥l,D為垂足,若AB=3,AC=BD=2,則D到平面ABC的距離等于(  )
A.$\frac{\sqrt{2}}{3}$B.$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\frac{\sqrt{5}}{2}$

分析 由題意通過等體積法,求出三棱錐的體積,然后求出D到平面ABC的距離.

解答 解:由題意畫出圖形如圖:
直二面角α-l-β,點(diǎn)A∈α,AC⊥l,C為垂足,B∈β,BD⊥l,D為垂足,
若AB=3,AC=BD=2,則D到平面ABC的距離轉(zhuǎn)化為三棱錐D-ABC的高為h,
所以AD=$\sqrt{5}$,CD=1,BC=$\sqrt{5}$
由VB-ACD=VD-ABC可知$\frac{1}{3}$×$\frac{1}{2}×2×1×2$=$\frac{1}{3}×\frac{1}{2}×2×\sqrt{5}$h
所以,h=$\frac{2\sqrt{5}}{5}$
故選:C.

點(diǎn)評 本題考查點(diǎn)到平面的距離,考查轉(zhuǎn)化思想的應(yīng)用,考查計(jì)算能力,等體積法是求解點(diǎn)到平面距離的基本方法之一.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.對大于或等于2的正整數(shù)的冪運(yùn)算有如下分解式:
22=1+3,32=1+3+5,42=1+3+5+7,…
23=3+5,33=7+9+11,43=13+14+17+19,…
根據(jù)上述分解規(guī)律,若m2=1+3+5+…+11,p3的分解中最小的正整數(shù)是31,則m+p=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,BC為圓O的直徑,A為圓O上一點(diǎn),過點(diǎn)A的直線與圓O相切,且與線段BC的延長線交于點(diǎn)D,E為線段AC延長線上的一點(diǎn),且ED∥AB.
(1)求證AC•AD=AB•CD;
(2)若DE=4,DC=5,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知曲線C的極坐標(biāo)方程為ρ2-2$\sqrt{2}$ρcos(θ+$\frac{π}{4}$)-2=0,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系xOy,若直線l過原點(diǎn),且被曲線C截得的弦長最小,求直線l的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,三棱柱ABC-A1B1C1為正三棱柱,BC=CC1=4,D是A1C1中點(diǎn).
(Ⅰ)求證:A1B∥平面B1CD;
(Ⅱ)求點(diǎn)B到平面B1CD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|x-2a|+|x-a|,a∈R,a≠0.
(Ⅰ)當(dāng)a=1時(shí),解不等式f(x)>3;
(Ⅱ)若b∈R,且b≠0,證明:f(b)≥f(a),并說明等號成立的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,正方形ABCD的邊長等于2,等腰三角形PAB中PA=PB,且平面PAB⊥平面ABCD,若直線PD與平面ABCD所成的角為$\frac{π}{4}$,則PA的長為( 。
A.$\sqrt{3}$B.2$\sqrt{3}$C.2$\sqrt{6}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在同一平面直角坐標(biāo)系中,將曲線y=3sin2x按伸縮變換$\left\{\begin{array}{l}x'=2x\\ y'=3y\end{array}\right.$后,所得曲線為( 。
A.y=sinxB.y=9sin4xC.y=sin4xD.y=9sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在數(shù)列{an}中,a1=1,$\frac{1}{12}$an=$\frac{1}{4}$an-1+$\frac{1}{3}$(n≥2),則{an}的通項(xiàng)公式為an=3n-2.

查看答案和解析>>

同步練習(xí)冊答案