分析 由Sn=$\frac{1}{2}$(1-an)知,當(dāng)n≥2時(shí),an=Sn-Sn-1=-$\frac{1}{2}$an+$\frac{1}{2}$an-1,整理可得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{3}$,由S1=a1=$\frac{1}{2}$(1-a1)⇒a1=$\frac{1}{3}$,從而可知數(shù)列{an}是首項(xiàng)為$\frac{1}{3}$,公比為$\frac{1}{3}$的等比數(shù)列,于是可求得數(shù)列{an}的通項(xiàng).
解答 解:因?yàn)镾n=$\frac{1}{2}$(1-an),
所以,當(dāng)n≥2時(shí),an=Sn-Sn-1=$\frac{1}{2}$(1-an)-$\frac{1}{2}$(1-an-1)=-$\frac{1}{2}$an+$\frac{1}{2}$an-1,
化簡(jiǎn)得2an=-an+an-1,即$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{3}$.
又由S1=a1=$\frac{1}{2}$(1-a1),得a1=$\frac{1}{3}$,
所以數(shù)列{an}是首項(xiàng)為$\frac{1}{3}$,公比為$\frac{1}{3}$的等比數(shù)列.
所以an=$\frac{1}{3}$×($\frac{1}{3}$)n-1=($\frac{1}{3}$)n.
故答案為:an=($\frac{1}{3}$)n
點(diǎn)評(píng) 本題考查數(shù)列遞推式的應(yīng)用,由Sn=$\frac{1}{2}$(1-an)求得$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1}{3}$是關(guān)鍵,考查等比關(guān)系的確定及其通項(xiàng)公式的應(yīng)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\sqrt{3}$ | B. | -1 | C. | 0 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{10}$ | C. | $\frac{1}{8}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com