已知函數(shù)f(x)(x∈R)滿足f(1)=1,且f(x)的導(dǎo)函數(shù)f′(x)<,則f(x)<的解集為(  )

A.{x|-1<x<1} B.{x|x<-1}

C.{x|x<-1或x>1} D.{x|x>1}

 

D

【解析】設(shè)F(x)=f(x)-,則F(1)=f(1)-=0,對任意x∈R,F(xiàn)′(x)=f′(x)-<0,即函數(shù)F(x)在R上單調(diào)遞減,則F(x)<0的解集為(1,+∞),即f(x)<的解集為(1,+∞),選D.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-2函數(shù)的單調(diào)性與最值(解析版) 題型:填空題

設(shè)函數(shù)f(x)= (x+|x|),則函數(shù)f[f(x)]的值域為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-12導(dǎo)數(shù)的應(yīng)用二(解析版) 題型:選擇題

若函數(shù)f(x)=x3-3x在(a,6-a2)上有最小值,則實數(shù)a的取值范圍是(  )

A.(-,1) B.[-,1)

C.[-2,1) D.(-2,1)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-11導(dǎo)數(shù)的應(yīng)用一(解析版) 題型:選擇題

函數(shù)f(x)=x2-2lnx的單調(diào)遞減區(qū)間是(  )

A.(0,1] B.[1,+∞)

C.(-∞,-1]∪(0,1] D.[-1,0)∪(0,1]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-10導(dǎo)數(shù)的概念及運算(解析版) 題型:解答題

已知函數(shù)f(x)=x3-4x2+5x-4.

(1)求曲線f(x)在點(2,f(2))處的切線方程;

(2)求經(jīng)過點A(2,-2)的曲線f(x)的切線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-8n次獨立重復(fù)實驗與二項分布(解析版) 題型:解答題

某工廠生產(chǎn)A,B兩種元件,其質(zhì)量按測試指標(biāo)劃分,指標(biāo)大于或等于82為正品,小于82為次品.現(xiàn)隨機(jī)抽取這兩種元件各100個進(jìn)行檢測,檢測結(jié)果統(tǒng)計如下:

測試

指標(biāo)

[70,76)

[76,82)

[82,88)

[88,94)

[94,100]

元件A

8

12

40

32

8

元件B

7

18

40

29

6

(1)試分別估計元件A,元件B為正品的概率;

(2)生產(chǎn)1個元件A,若是正品則盈利40元,若是次品則虧損5元;生產(chǎn)1個元件B,若是正品則盈利50元,若是次品則虧損10元.在(1)的前提下,

(ⅰ)X為生產(chǎn)1個元件A和1個元件B所得的總利潤,求隨機(jī)變量X的分布列和數(shù)學(xué)期望;

(ⅱ)求生產(chǎn)5個元件B所得利潤不少于140元的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-8n次獨立重復(fù)實驗與二項分布(解析版) 題型:填空題

在國慶期間,甲去北京旅游的概率為,乙、丙去北京旅游的概率分別為.假定三人的行動相互之間沒有影響,那么這段時間內(nèi)至少有一人去北京旅游的概率________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-7離散型隨機(jī)變量及分布列(解析版) 題型:選擇題

一袋中有5個白球,3個紅球,現(xiàn)從袋中往外取球,每次任取一個記下顏色后放回,直到紅球出現(xiàn)10次時停止,設(shè)停止時共取了ξ次球,則P(ξ=12)=(  )

A.()10()2 B.()9()2×

C.()9()2 D.()9()2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):10-4隨機(jī)事件的概率(解析版) 題型:解答題

已知A、B、C三個箱子中各裝有2個完全相同的球,每個箱子里的球,有一個球標(biāo)著號碼1,另一個球標(biāo)著號碼2.現(xiàn)從A、B、C三個箱子中各摸出1個球.

(1)若用數(shù)組(x,y,z)中的x,y,z分別表示從A、B、C三個箱子中摸出的球的號碼,請寫出數(shù)組(x,y,z)的所有情形,并回答一共有多少種;

(2)如果請您猜測摸出的這三個球的號碼之和,猜中有獎,那么猜什么數(shù)獲獎的可能性最大?請說明理由.

 

查看答案和解析>>

同步練習(xí)冊答案